Подключение люминесцентной лампы
Содержание:
- Что такое люминесцентные светильники, их устройство и принцип работы
- Вариант включения с двумя балластами и двумя трубками
- Принцип работы люминесцентного светильника
- Устройство и принцип работы люминесцентного светильника
- Особенности конструкции люминесцентных источников света
- Принцип работы дросселя.
- Возможные поломки
- Выбор ЭПРА.
- Устройство и принцип работы ламп
- Принцип работы стартера люминесцентной лампы
- Принцип работы люминесцентного светильника
- Некоторые особенности ламп дневного света
- Ремонт аккумуляторного люминесцентного светильника
- Техника безопасности
- Подключение ЭПРА
Что такое люминесцентные светильники, их устройство и принцип работы
Люминесцентный светильник — наиболее распространенный тип освещения, который встречается в помещениях административного назначения (детские сады, школы, офисы), а также в домашнем быту и промышленных зонах. Его монтаж и последующие растраты на электроэнергию обойдутся недорого. Особенности конструкции позволяют использовать их и для внешнего, и для внутреннего освещения.
Источник света в таких устройствах — люминесцентная лампа. Принцип ее работы заключается в способности паров металла и некоторых газов излучать свет при воздействии на них электрическим полем. Лампы по виду похожи на стеклянные трубки.
Устройство люминесцентного светильника можно представить так: внутри него есть покрытие — люминофор, в трубке присутствует инертный газ с парами ртути. С каждого края ламповой конструкции находятся вольфрамовые спирали со слоем бария оксида, выполняющие функции катодов. Они соединены с двумя штырьками, которые и связывают лампу с наружным источником питания. Это типичная схема таких осветительных приборов.
Есть еще и люминесцентные ламповые конструкции, которые предназначены для светильников небольших размеров. Они имеют внешний вид несколько иной, при этом труба может быть изогнута в спираль, кольцо или другую форму.
Вышеперечисленные конструкции имеют свои положительные и отрицательные стороны. К плюсам таких осветительных приборов относятся:
- способность повышенной светоотдачи: прибор в 20 Вт равен по мощности лампе накаливания в 100 Вт;
- КПД выше, чем у осветительных приборов с лампами накаливания;
- большой выбор оттенков излучаемого света;
- более длительный срок эксплуатации по сравнению с лампами накаливания;
- излучаемый свет не точечный, а рассеянный.
Если же говорить о недостатках таких осветительных приборов, то к ним можно причислить:
- требуется специальная утилизация из-за содержания паров ртути;
- излучение от таких светильников имеет неравномерный спектр, что является неприятным для глаз;
- некоторые светильники в процессе своей работы могут издавать неприятные шумы.
Вариант включения с двумя балластами и двумя трубками
При наличии двух источников освещения, а также двух комплектов для их соединения, нужно использовать такой вариант.
Подключение с двумя комплектами
В данной ситуации соединение осуществляется следующим образом:
- на вход дросселя подается фазный провод;
- далее он с выхода дросселя направляется на один контакт экономки. При этом со второго коннектора он идет на первый стартер;
- с первого стартера он направляется на вторую пару коннекторов этого же источника света;
- свободный коннектор необходимо соединить с нулевым проводом питания, который на рисунке обозначен как N
Таким же образом происходит включение и второй трубки: вначале идет дроссель, далее с него один коннектор направляется на контакт лампочки, а второй – на стартер. Выход со стартера нужно соединить со второй парой контактов светильника, а свободный коннектор — вывести на нулевой провод.
Принцип работы люминесцентного светильника
Как работает люминесцентная лампа? Сначала образуются свободно движущиеся электроны. Это происходит в момент включения питающего переменного напряжения в областях вокруг вольфрамовых нитей накаливания внутри стеклянного баллона.
Эти нити за счет покрытия их поверхности слоем из легких металлов по мере нагрева создают эмиссию электронов. Внешнего напряжения питания пока недостаточно для создания электронного потока. Во время движения эти свободные частицы выбивают электроны с внешних орбит атомов инертного газа, которым заполнена колба. Они включаются в общее движение.
На следующем этапе в результате совместной работы стартера и электромагнитного дросселя создаются условия для увеличения силы тока и образования тлеющего разряда газа. Теперь наступает время организации светового потока.
Движущиеся частицы обладают достаточной кинетической энергией, необходимой для перевода электронов атомов ртути, входящей в состав лампы в виде небольшой капли металла, на более высокую орбиту. При возвращении электрона на прежнюю орбиту высвобождается энергия в виде света ультрафиолетового спектра. Преобразование в видимый свет происходит в слое люминофора, покрывающего внутреннюю поверхность колбы.
Для чего нужен дроссель в люминесцентной лампе
Это устройство работает с момента старта и на протяжении всего процесса свечения. На разных этапах задачи, выполняемые им, различны и могут быть разделены на:
- включение светильника в работу;
- поддержание нормального безопасного режима.
На первом этапе используется свойство катушки индуктивности создавать импульс напряжения большой амплитуды за счет электродвижущей силы (ЭДС) самоиндукции при прекращении протекания переменного тока через ее обмотку. Амплитуда этого импульса напрямую зависит от величины индуктивности. Он, суммируясь с переменным сетевым напряжением, позволяет кратковременно создать между электродами напряжение, достаточное для разряда в лампе.
При созданном постоянном свечении дроссель выполняет роль ограничивающего электромагнитного балласта для цепи дуги с низким сопротивлением. Его цель теперь – стабилизация работы для исключения дугового замыкания. При этом используется высокое индуктивное сопротивление обмотки для переменного тока.
Принцип работы стартера люминесцентной лампы
Устройство предназначено для управления процессом запуска светильника в работу. При первоначальном подключении сетевого напряжения оно полностью прикладывается к двум электродам стартера, между которыми существует небольшой промежуток. Между ними возникает тлеющий разряд, в котором температура увеличивается.
Один из контактов, выполненный из биметалла, имеет возможность под действием температуры изменять свои размеры, изгибаться. В этой паре он выполняет роль подвижного элемента. Возрастание температуры приводит к быстрому замыканию электродов между собой. По цепи начинает протекать ток, это приводит к понижению температуры.
Через небольшой промежуток времени происходит разрыв цепи, что является командой для вступления в работу ЭДС самоиндукции дросселя. Последующий процесс был описан выше. Стартер понадобится только на этапе следующего включения.
Это интересно: Пол в гараже — чем утеплить бетонный и деревянный
Устройство и принцип работы люминесцентного светильника
Современные люминесцентные светильники относятся к категории наиболее распространенных типов надежных и долговечных осветительных приборов. Если до недавнего времени такие устройства использовались преимущественно в обустройстве освещения административных и офисных зданий, то в последние годы они всё чаще находят применение в жилых помещениях.
Источник света в таких видах светильников представлен люминесцентной или газоразрядной лампой, функционирующей благодаря свойству некоторых газообразных и парообразных веществ достаточно мощно светиться в условиях электрического поля.
Светильник люминесцентный
Люминесцентные лампы, устанавливаемые в малогабаритные и компактные светильники, могут обладать кольцевидной, спиралевидной или любой другой формой, что положительно сказывается на габаритах осветительного прибора.
Выпускаемые лампы принято подразделять на линейные и компактные модели. Первый вариант имеет характерные отличия по длине, а также диаметру колбы. Компактные модели имеют, как правило, изогнутую трубку, а основные различия представлены типом цоколя.
Блок 2
Несмотря на кажущуюся простоту устройства, и несложный принцип работы люминесцентной лампы, чтобы продлить срок службы прибора и получить качественное освещение, важно строго соблюдать схему подключения и использовать комплектующие только от проверенных и хорошо зарекомендовавших себя производителей. https://www.youtube.com/embed/udZ10lU19wo
Особенности конструкции люминесцентных источников света
Лампы дневного света могут отличаться формой, дизайном, мощностью и типом светового излучения (диной волны светового потока) но по конструкции все они однотипны.
При включении лампы нагреваются миниатюрные нити накаливания (спирали) они нагревают газ. Благодаря этому нагреву через газ проходит высоковольтный разряд, газ ионизируется, что и приводит к свечению люминофора.
Спирали для нагрева требуют значительно меньшего напряжения чем вольфрамовые нити ламп накаливания. Поэтому прямое включение ламп дневного света в сеть напряжением 220,0 вольт невозможно. Для их питания необходимы специальные согласующие устройства, которые сегодня выпускаются двух типов.
Принцип работы дросселя.
Основное, что делает дроссель – это производит сдвиг фазы переменного тока в момент перехода через ноль. За счет этого поддерживается тлеющий разряд в колбе газоразрядной лампы. Для ограничения тока, проходящего через электроды лампы выбран дроссель так как он имеет реактивное сопротивление. Кроме того, любая катушка индуктивности может накапливать энергию.
Для зажигания тлеющего разряда необходим импульс электрического тока, это тоже обеспечивается дросселем.
При подаче питания на схему происходит следующее:
- Ток идет по схеме через каушку, электроды лампы и стартер. Он сравнительно не велик, не более 50 мА.
- В колбе стартера происходит ионизация газа, температура растет.
- Биметаллические контакты замыкаются, сила тока возрастает до 600 мА. Дальнейший ток ограничивается дросселем
- Этого тока вполне достаточно для разогрева электродов лампы EL
- В лампе EL1 начинает протекать тлеющий разряд, образуется ультрафиолетовое излучение.
- Люминофорное покрытие под действием образовавшегося ультрафиолета начинает испускать свет с видимой длиной волны.
Важно помнить, что параметры лампы и дросселя коррелируют. Обычно самостоятельное изготовление дросселя лишено смысла
Сейчас на рынке очень много различной пуско-регулирующей аппаратуры. Дополнительно дроссель снижает помехи и сглаживает пульсации.
Возможные поломки
Рассмотрим основные возможные неисправности люминесцентных светильников и пути их устранения:
-
Срабатывает защита. Причиной этому может быть замыкание в электросети за автоматом или же неисправность в работе конденсатора на входе. Такое часто бывает при попытке замены лампочки на светодиодные элементы. Помочь решить проблему можно путем замены конденсатора. В обязательном порядке нужно проверить контакты стартера и патронов. Осуществляется замена люминесцентных ламп.
- Не зажигается. Это указывает, что в патроне нет совсем либо очень слабое напряжение. Следует проверить показатель с помощью индикатора или тестера. Если светильник не зажигается, а на концах трубки есть свечение, то это свидетельствует о неисправности стартера, который нужно заменить. Если же свечения нет, причинами могут быть поломки дросселя, того же стартера, испорченность самой лампочки. Если свечение замечено только в одном конце, то это явный признак ошибки, проверки требует схема подключения.
- Постоянное мигание. Такой вид неполадки свидетельствует о поломке стартера или сниженном напряжении в сети электросистемы.
- Постоянное самопроизвольное зажигание и погасание лампы говорит о необходимости ее замены.
Выбор ЭПРА.
Если Вы решились на модернизацию светильников путем замены дросселя и стартера на современный электронный пускатель для люминесцентных ламп, то первый фактор который нужно учесть, это производитель. От неизвестных марок и подозрительно дешевых устройств лучше отказаться. Но и нельзя сразу сказать, что дешево – это плохо и недолговечно. Информация сегодня открыта вся, желательно ознакомиться и с отзывами по конкретной модели в Интернете. Среди производителей внимания заслуживают:
- Helvar,
- Philips,
- Osram,
- Tridonic
Виды ЭПРА
При выборе важно изучить документацию. Наиболее важны следующие характеристики:
- Тип источника света,
- Мощность источников света,
- Условия и режимы эксплуатации.
У некоторых моделей марок Tridonic, Philips, Helvar имеется возможность подключения как переменного напряжения (~220), так и постоянного (=220).
Устройство и принцип работы ламп
Конструкция относится к газоразрядным источникам освещения, сконструирована с использованием трубки из стекла, которая с двух сторон запаяна. Изнутри на поверхности лампы нанесен слой специального вещества (люминофора). Устройство излучает рассеивающий свет после подключения к источнику электропитания. Изнутри колбу наполняют аргоном.
Люминесцентное устройство включает:
- катоды, защищенные эмиттерным слоем;
- выводные штыри;
- концевую панель;
- трубки для отвода инертного газа;
- ртуть;
- стеклянную штампованную ножку, дополненную электровводами и т.д.
Принцип функционирования основывается на возникновении электроразряда между электродами после подсоединения к электросети. После взаимодействия разряда с газами инертными и испарениями ртути возникает излучение ультрафиолета, воздействующее на люминофор, преобразующий энергию в световое излучение. Для корректировки оттенков ртутьсодержащих устройств применяются люминофоры с разными химическими компонентами.
Дуговой разряд в колбе создается оксидным самокалящимся катодом, на который воздействует электричество. Для включения ламп ДРЛ, ЛД катоды разогревают посредством пропускания разряда тока. Устройства с холодным катодом запускаются ионным воздействием в тлеющем разряде высокого напряжения.
Для функционирования люминесцентным приборам требуется дополнительный узел (балласт), обеспечивающий работу дросселем и стартером. Балласт регулирует силу разряда и выпускается 2 видов (электромагнитный и электронный).
Электромагнитный балласт является механическим.
Устройство относится к бюджетным вариантам, в работе прибор может издавать шум.
Электронные узлы дороже по стоимости, работают бесшумно, оперативно включают систему, компактны.
Принцип работы стартера люминесцентной лампы
Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.
Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.
Схема работы стартера
Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.
Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.
Принцип работы люминесцентного светильника
Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.
Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).
Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.
Для чего нужен дроссель
Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:
- формирование напряжения запуска;
- ограничение тока через электроды.
Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.
Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.
В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.
Отличия дросселя от ЭПРА
Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.
В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:
- длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
- большие искажения формы напряжения питающей сети (cosф
- мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
- большие массо-габаритные характеристики;
- низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
- низкая надежность запуска при отрицательных температурах.
Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.
Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.
Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:
- с предварительным подогревом электродов;
- с холодным запуском.
В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.
Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).
Схемы с электронным дросселем имеют такие преимущества:
полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.
Некоторые особенности ламп дневного света
Начнём со «смерти» такой лампы, которая потребует особого подхода к «похоронам». Наберите в поиске « демеркуризация утилизация ртуть мой город
». Найдите ближайшую точку, которая оказывает такую услугу. Таких точек много, одна-две обязательно окажутся неподалёку. Именно туда нужно сдать перегоревшую ЛЛ, а не выкидывать её в мусорный контейнер. Туда же нужно сдавать энергосберегающие лампы, ртутные, перегоревшие светодиоды и батарейки. Если конечно Вы, человек, который неравнодушен к приятности прогулок около своего дома.
Это один из недостатков, который вызывает замена люминесцентных ламп, но не самый сложный. Куда сложнее ситуация, когда после многолетней эксплуатации «прикипела» пятка лампы к цоколю. Да, ЛЛ служат много лет, и часто случается так, что цоколь просто обрастает отложениями (конденсат, пыль и т.д.), что не позволяет вынуть лампу, не разрушив колбу. Наша рекомендация – пригласите специалистов. Вы должны понимать, что внутри колбы пары ртути и других газов, которые тяжелее воздуха и от которых проветриванием не избавится.
Перепад напряжения выведет из строя примерно 30% ЛЛ. Это нужно иметь в виду, занимаясь обустройством освещения на даче, где падения напряжения не исключения, а скорее правило. Оставшиеся 70% ламп не выйдут из строя. Они просто станут работать с меньшим КПД.
Если подключить ЛЛ в сеть, не соблюдая принцип «фаза – нейтральный провод», то каждая вторая лампа будет мерцать. Даже при последовательном соединении. Это потому, что схема люминесцентной лампы содержит конденсатор, который будет сбрасывать избыток заряда при неверном присоединении балансов.
Даже при соблюдении любых схем подключения люминесцентных ламп, они всё равно будут мерцать и «моргать». Это не потому, что мы плохо разобрались в том, как всё сделать правильно. Это физика электрического пробоя, который не может быть постоянным. Он «искрит», поэтому искрит и лампа. Чем меньше работает балласт (конденсатор), тем лучше он держит уровень «пробоя», и тем меньше мерцание лампы.
Лампа стала заметно мигать? Сначала поставьте на её место другую лампу, которая не мигает. Проверьте напряжение в сети, если всё в порядке — замените стартёр. Если мигание не исчезло – замените ЭПРА целиком.
И не забывайте время от времени вынимать лампу и нулевой шкуркой чистить контакты, это ахиллесова пята этих ламп – окисление контактов, что значительно влияет на её работоспособность.
В заключение хотелось бы отметить, что при всех своих недостатках, ЛЛ имеют множество преимуществ, от длительности сроков эксплуатации и правильного спектра, до безопасности и минимальной нагрузки на электропроводку квартиры. Поэтому, несмотря на завоевание рынка освещения , пока рановато списывать люминесцентные лампы в утиль. Полезнее научится использовать их грамотно и уместно.
Сегодня наблюдается тенденция к самостоятельному изготовлению для дома различных девайсов, в том числе и осветительных приборов. Это позволяет дать вторую жизнь старым бытовым вещам, а также хорошо сэкономить на покупке новых светильников. Сегодня речь пойдет об изготовлении своими руками люминесцентного светильника.
Сделать такой осветительный прибор или провести ремонт вышедшей из строя лампы сможет любой человек, обладая даже минимальными представлениями об основах электротехники. В этом вам поможет наша статья.
Ремонт аккумуляторного люминесцентного светильника
Приведенная схема светильника Ultralight System по схемотехнике похожа на подобные устройства других фирм.
Схема и краткое описание возможно пригодится при ремонте и эксплуатации.
Светильник аккумуляторный люминесцентный предназначен для обеспечения эвакуационного и резервного
освещения, а также как сетевой настольный светильник.
Потребляемая мощность в режиме зарядки – 10Вт.
Время работы от внутренней батареи при полном заряде, не менее 6ч. (с одной лампой и 4ч. с двумя лампами).
Время полного заряда батареи, не менее 14 ч.
Проверить работу светильника, выявить в большинстве случаев неисправности возможно даже не вскрывая
корпус светильника, ориентируясь по яркости свечения светодиодов LOW и HIGH.
Для этого переключатель режима перевести с OFF в DC светодиод LOW или HIGH и лампы светильника должны
загораться. Когда лампы не засветились, переводим переключатель в режим AC подключаем в сети, если после
этого светильник не работает нужно смотреть плату управление и лампы.
Важно
Если светильник нормально работает от сети, переводим, переключатель в режим DC, нажать кнопку TEST,
светильник должен засветится. Даже 1,5-2В лампы тускло загораются, при нажатии кнопки TEST. Отсюда вывод
напряжения на аккумуляторе меньше 5В. Светодиод LOW ярко светит при напряжении на батареи 5.9В,
при уменьшении напряжения яркость будет падать и при 2В отключается, это показывает разряд аккумулятора .
Свечение индикатора HIGH свидетельствует напряжение на аккумуляторе 6.1В и выше. При напряжении 6.4В
светодиод должен ярко светить, с уменьшением напряжение падает яркость светодиода, при 6.0В индикатор
отключается.
Когда на аккумуляторе 6.0В, погаснут оба индикатора LOW и HIGH.
Частые дефекты светильника.
Не работает зарядка аккумулятора.
Проверить сетевой шнур. Не исправный блок питание. Часто проблемой отказа нормальной работы блока
питания является очень плохой монтаж. Нужно проверить все пайки подозрительные пропаять. Проверить
Совет
транзисторы блока питания, если не исправный один с них нужно менять сразу и другой.
Практика показывает, что виновником повторного ремонта будет ранее не замененный транзистор.
В режиме AC работает, DC не работает.
Светодиоды LOW /HIGH не светят, перегорел предохранитель.
В большинстве случаем обрыв соединяющих проводников платы, или выхода из строя аккумулятора
или полной его разрядке.
Плата управление.
Полезные ссылки …
Устройство зарядно-пусковое “ИМПУЛЬС ЗП-02” Фонарик en electronic model: 3810
Ремонт релейного стабилизатора напряжения Uniel RS-1/500 Ремонт стабилизаторов серии LPS-хххrv
Техника безопасности
При замене люминесцентных ламп необходимо соблюдать стандартные правила:
- Все работы проводить чистыми сухими руками без соприкосновения с токопроводящими поверхностями. Можно воспользоваться специальными перчатками.
- Извлекая старую лампу и вкручивая новую, держаться только за пластиковую часть, под которой находится пускорегулирующий аппарат. Сильное воздействие на колбу может привести к поломке.
- Подбирать осветительный прибор под конкретные параметры, не завышая и не занижая их. В противном случае вероятна нестабильная работа устройства с пульсациями и быстрым выходом из строя.
- Если лампа разбилась, сразу предпринять меры по обеззараживанию помещения и утилизации опасных отходов.
Подключение ЭПРА
Как сделать монтаж водяного теплого пола своими руками: пошагавшая инструкция монтажа на все виды покрытий (20+ Фото & Видео) +Отзывы
Подсоединение ЭПРА (электронного пускового механизма)
Дроссели являются довольно шумными устройствами. Поэтому их последние годы подключают в систему люминесцентного освещения нечасто, заменяя их ЭПРА, цифровыми или аналоговыми.
В стартере подобные устройства уже не нуждаются. По сути, электронные пусковые устройства – это небольшие электронные платы. Они сами способны регулировать уровень напряжения и обеспечивают ровный свет, без мерцания. Плюс они более безопасны и менее пожароопасны в эксплуатации и имеют больший срок службы.
Вариантов реализации ЭПРА может быть немало, но основных способов запуска два:
- источники предварительно разогревают; это помогает увеличить КПД прибора и снизить его мерцание
- с использованием колебательного контура; нить накала в этом случае является его частью; при прохождении разряда параметры контура меняются, в результате напряжение падает до требуемого уровня
Избавиться от надоедливого гудения и моргания можно, заменив старый дроссель на современный электронный пускорегулирующий механизм. Для этого следует:
back to menu
Печь на отработке: виды, устройство, чертежи, инструкция по изготовлению своими руками (Фото & Видео) +Отзывы
Использование ламп для тепличного выращивания растений
ПЛЮСЫ:
- Первым значительным плюсом таких устройств является существенная экономия электроэнергии. Источники света последнего поколения, работающие по этому принципу, тратят ее в 4-5 раз меньше, чем обычные лампы накаливания.
- Кроме высокой светоотдачи, положительным моментом является длительный срок службы. Он может составлять 12-25 тыс. часов. Подобные устройства часто используют для контрастного освещения помещений большой площади (офисов, торговых центров, школ) или уличного освещения. Используют их на транспорте, в уличных фонарях, туннелях.
МИНУСЫ:
- Необходимость подключения дополнительных устройств (стартеров и дросселей)
- Доминирование в спектре желтого света и искажение цветопередачи освещаемых предметов
- Значительные габариты колбы, из-за чего становится сложно равномерно перераспределить поток света
- На силу света в таких источниках способна влиять температура окружающей среды
- Разогрев лампы происходит не сразу; полную яркость она набирает спустя некоторое время, иногда оно может длится 10-15 минут
- значительная пульсация света, что может сказаться отрицательно на зрении
- Наличие, пусть в минимальных количествах ртути, опасной для здоровья человека, растений и животных
Последними разработками ученых стали компактные люминесцентные источники освещения, внешне схожие с обычными лампами накаливания. Они снабжены стандартным патроном, и их можно легко вкрутить в любую люстру или торшер. Никакой модернизации при этом не требуется.
Вся пускорегулирующая аппаратура (ПРА) в них расположена в самом патроне или выносится отдельно в небольшие блоки. Подобные устройства часто называют энергосберегающими.
Сравнение параметров разных источников освещения
Но все же последние годы пользователи предпочитают подключать вместо люминесцентных ламп современные светодиодные. Принцип работы этих устройств существенно отличается. Люминесцентные колбы заполняются газом и парами ртути, и световое излучение образуется за счет разогревания вольфрамовой спирали. В светодиодных устройствах излучателем света является группа диодов или единичный светодиод. Именно он преобразует ток в световые лучи при протекании его через полупроводник.
Подобные устройства не только более прочны и менее опасны (повреждение люминесцентных же грозит попаданием в организм человека ртути). КПД светодиодных источников освещения гораздо больше, поэтому они более экономичны. Схема подключения люминесцентной или светодиодной лампы в обеих случаях максимально проста – достаточно лишь вкрутить ее патрон в цоколь.
Подробно о способах подключения люминесцентных ламп смотрите на следующем видео: