Назначение и подключение дросселя для ламп дневного света
Содержание:
- Что такое дроссель и для чего он нужен?
- Устройство люминесцентной лампы
- Виды
- Вариант включения с двумя балластами и двумя трубками
- Основные неполадки и способы их устранения
- Принцип работы люминесцентного светильника
- Для чего нужен дроссель
- Схема подключения люминесцентных ламп без стартера
- Рэй перейдет на Темную сторону в «Последнем джедае?
- Разнообразие выбора
Что такое дроссель и для чего он нужен?
В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе. Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике. Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.
Конструкция и принцип работы
Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:
Внешний вид изделия может быть таким, как на фото:
Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.
Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике.
Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление.
Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.
Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.
Интересное пояснение по данному вопросу вы также можете просмотреть на видео:
Наглядное сравнение, объясняющее принцип работыТеоретическая часть вопроса
Область применения
Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.
Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:
Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь.
В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение.
Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.
В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.
Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.
В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.
С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.
Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.
Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!
Будет интересно прочитать:
Устройство люминесцентной лампы
На двух торцах люминесцентной лампы рис.2 расположены вваренные стеклянные ножки, на каждой ножке смонтированы электроды 5, электроды выведены к цоколю 2 и соединены с контактными штырьками, на самих электродах по обеим торцам лампы закреплена вольфрамовая спираль.
На внутреннюю поверхность лампы нанесен тонкий слой люминофора 4, колба лампы 1 после откачки воздуха заполняется аргоном с небольшим количеством ртути 3.
Для чего нужен дроссель в люминесцентной лампе
Дроссель в схеме люминесцентного светильника служит для броска напряжения. Рассмотрим отдельную электрическую схему рис.3, которая не относится к схеме люминесцентного светильника.
Для данной схемы, при размыкании ключа, лампочка на короткое мгновение загорится ярче и затем погаснет. Явление это связано с возникновением ЭДС самоиндукции катушки правило Ленца. Чтобы увеличить свойства проявления самоиндукции, катушку наматывают на сердечник — для увеличения электромагнитного потока.
Схематическое изображение рисунка 4 дает нам полное представление об устройстве дросселя для отдельных типов светильников с люминесцентными лампами.
Магнитопровод сердечник дросселя собирается из пластин электротехнической стали, две обмотки в дросселе — между собой соединены последовательно.
Принцип работы стартера люминесцентной лампы
Стартер в электрической схеме выполняет работу быстродействующего ключа, то-есть им создается замыкание и размыкание электрической цепи.
стартеры для люминесцентного свтильника
При включении стартера замыкании ключа происходит разогрев катодов, а при размыкании цепи создается импульс напряжения, необходимый для зажигания лампы. Стартер в разобранном виде представляет из себя так называемую лампу тлеющего разряда с биметаллическими электродами.
Принцип работы люминесцентного светильника
По двум предоставленным схемам люминесцентных светильников рис.5 можно понять, — в каком соединении состоят каждые отдельные элементы.
Все элементы двух светильников состоят в последовательном соединении, — кроме конденсаторов. Когда мы включаем люминесцентный светильник, происходит прогревание биметаллической пластинки стартера. Пластинка при прогревании изгибается и стартер замыкается, тлеющий разряд при замыкании пластинок гаснет и пластинки начинают остывать, при остывании — пластинки размыкаются. Когда пластинки размыкаются в парах ртути происходит дуговой разряд и лампа зажигается.
В настоящее время имеются более усовершенствованные люминесцентные светильники — с электронным балластом, принцип работы которых тот-же самый что и у люминесцентных светильников, которые были рассмотрены в этой теме.
Предоставленные для Вас записи вносятся мною в сайт из личных конспектов, почерк в которых очень плохой, часть информации берется из собственных знаний. Фотоснимки и электрические схемы подбираются для темы — из интернета. Чтобы предоставить свои записи с личными фотоснимками при выполнении каких-либо работ, нужно наверное иметь личного фотографа или непосредственно обращаться с просьбой к кому-либо, а обращаться с такой просьбой просто не хочется.
На этом пока все друзья. Следите за рубрикой.
04.03.2015 в 16:41
Всегда помогу Борис полезной информацией по части электротехники как Вам так и Вашим друзьям, и знакомым. Виктор.
26.02.2015 в 08:58
Здравствуйте, Виктор! Спасибо за эл.ликбез,помогает! У меня такой случай: погас сначала один потолочный светильник встроенный в систему Армстронг, потом другой. Обратился за помощью к специалисту и получил ответ: светильники надо выбросить и заменить на новые целиком, т.к. сейчас идут светильники без стартеров и т. д. Я заменил светильники и задумался, что этот путь очень дорогой, новый светильник стоит 1400рублей. Если можно, скажите пожалуйста как проверить начинку светильника? дроссели, стартеры, конденсатор. Светильник 4-х ламповый, с 4-мя стартерами, двумя дросселями, одним конденсатором, другими словами как найти неисправный прибор? Прибор-тестор у меня есть. И ещё, в каком магазине можно купить в Тюмени составные части начинки? Заранее благодарю Вас. Спасибо. Борис. 26.02.15.
04.03.2015 в 16:35
Здравствуйте Борис. По люминесцентным светильникам я составлю дополнительную отдельную тему и отвечу на интересующие Ваши вопросы. Следите за рубрикой Борис, я просто стал редко заходить на свой сайт и Ваше письмо прочитал 4 марта, постараюсь ответить на вопросы в полном объеме.
17.03.2015 в 12:57
Виды
дрюссель ЭПРА
Существует несколько различных классификаций дросселей по разным параметрам, основным является их деление по тем же техническим характеристикам, что и ламп, которые планируется подключать к этим элементам.
В соответствии с этим, они подразделяются по мощности и бывают следующего вида:
- 9Вт предназначается для люминесцентных источников света энергосберегающего типа.
- 11Вт также используются для энергосберегающих источников света и малогабаритных светильников.
- 15Вт подходит для любого типа источников света соответствующей мощности, которые используются в небольших и настольных светильниках.
- 18Вт используются как для обычных настольных светильников, так и для подобных ламп офисного образца, которые потребляют большую мощность.
- 36Вт предназначены для люминесцентных разновидностей ламп с небольшим показателем мощности.
- 65Вт уже возможно использовать для многоламповых источников света, которые монтируются в поверхность потолка.
- 80Вт подходят для наиболее мощных люминесцентных ламп.
Определить дроссели, которые подходят для люминесцентных ламп достаточно просто, они имеют специальную маркировку ЭПРА или ПРА. Существуют специфические разновидности данных элементов, которые рассчитаны сразу на несколько источников света.
Вместо них также можно использовать современные электронные дроссели, которые могут рассчитывать мощность на две или более лампы.
Это является еще одним способом их классификации:
- Электронные разновидности, которые были разработаны и внедрены в массовое пользование относительно недавно, обладают рядом значимых преимуществ, в том числе легкостью монтажа. Это обуславливается тем, что наличие электронного дросселя позволяет полностью исключить из схемы стартер и выполнять его функции. Его применение на практике позволяет снизить мерцание светильника, подавить рабочие шумы, а также избавиться от пульсаций лампы при начальном розжиге.
- Электромагнитная разновидность, которая всегда имеет последовательное подключение с лампой. Ее холодный запуск не представляется возможным, поскольку такой элемент всегда предполагает наличие стартера, разогревающего электроды. Главный недостаток таких элементов – это возможное мерцание ламп.
Также, возможно деление дросселей по степени потери ими мощности, у такого классификатора имеется специальное обозначение:
- Маркировка D обозначает обычный уровень потери мощности со стандартными параметрами.
- Маркировка C обозначает, что показатель потери мощности является пониженным.
- Маркировка B информирует о крайне низкой степени потери мощности.
Последняя классификация дросселей, которую необходимо рассмотреть, заключается в их назначении, в соответствии с этим параметром они разделяются по количеству фаз:
- Однофазная разновидность является наиболее распространенной, поскольку она предназначена для стандартных люминесцентных ламп как бытового, так и промышленного назначения.
- Трехфазная разновидность предназначена для работы с дуговыми натриевыми трубчатыми и ртутными лампами высокого давления, подключаемыми к сети 220В и 380В. Такие дроссели имеют внутреннее деление, в соответствии с которым они различаются по материалу корпуса (стальные или ферритные), а также по особенностям конструкции (встраиваемые, герметизированные, влагозащитные).
Вариант включения с двумя балластами и двумя трубками
При наличии двух источников освещения, а также двух комплектов для их соединения, нужно использовать такой вариант.
Подключение с двумя комплектами
В данной ситуации соединение осуществляется следующим образом:
- на вход дросселя подается фазный провод;
- далее он с выхода дросселя направляется на один контакт экономки. При этом со второго коннектора он идет на первый стартер;
- с первого стартера он направляется на вторую пару коннекторов этого же источника света;
- свободный коннектор необходимо соединить с нулевым проводом питания, который на рисунке обозначен как N
Таким же образом происходит включение и второй трубки: вначале идет дроссель, далее с него один коннектор направляется на контакт лампочки, а второй – на стартер. Выход со стартера нужно соединить со второй парой контактов светильника, а свободный коннектор — вывести на нулевой провод.
Основные неполадки и способы их устранения
Средний эксплуатационный срок у подобных приспособлений составляет около 3 лет, но во многом он зависит от правильности подключения и использования, а также от качества приобретенной продукции и отсутствия в ней производственного брака.
Иногда возникают поломки данной детали, наиболее распространенными неисправностями являются следующие:
- Зажигание лампы не осуществляется, отсутствует даже свечение на концах. Основными причинами являются разрывы в кабеле, нарушение контактов или изначально неправильное подключение схемы. Если в ходе проверок ничего из перечисленного выявлено не было, то причина заключается именно в неисправности дросселя.
- Нарушение изоляции дросселя или возникновение межвитковых замыканий в его обмотке, что обычно приводит к фактически моментальному перегоранию электродов спирали лампы после ее включения. Такие же последствия может иметь и наличие в схеме замыканий на корпус, поэтому первоначально требуется установить точную причину неполадок.
- Почернение концов лампы через некоторое время после ее включения. Также может быть вызвано замыканием на корпус светильника, поэтому предварительно необходимо при помощи мультиметра или тестера замерить величину электрического тока как в момент запуска схемы, так и во время ее функционирования. Если показатели значительно превосходят допустимые значения, то причины неисправностей именно в дросселе.
- Появление в лампе спиральных или змеевидных перемещающихся полос, которое обусловлено хаотичным движением разрядного шнура после запуска схемы. Если замена лампы, а также проверка внутрисетевого уровня напряжения и исправности контактов не помогли исправить ситуацию, то это свидетельствует о поломке дросселя.
Если были выявлены неисправности данного приспособления, то пытаться его починить не стоит, учитывая сложность этого процесса. Требуется заменить деталь, чтобы обеспечить правильное функционирование системы освещения.
Принцип работы люминесцентного светильника
Особенность работы люминесцентных светильников заключается в том, что их нельзя напрямую подключать в сеть питания. Сопротивление между электродами в холодном состоянии большое, и величина тока, протекающего между ними, недостаточна для возникновения разряда. Для зажигания требуется импульс высокого напряжения.
Лампа с зажженным разрядом характеризуется низким сопротивлением, которое имеет реактивную характеристику. Для компенсации реактивной составляющей и ограничения протекающего тока последовательно с люминесцентным источником света включается дроссель (балласт).
Многим непонятно, для чего нужен стартер в люминесцентных лампах. Дроссель, включенный в цепь питания совместно со стартером, формирует импульс высокого напряжения для запуска разряда между электродами. Так получается потому, что при размыкании контактов стартера на выводах дросселя формируется импульс ЭДС самоиндукции величиной до 1кВ.
Watch this video on YouTube
Для чего нужен дроссель
Использование дросселя для люминесцентных ламп (балласта) в цепях питания необходимо по двум причинам:
- формирование напряжения запуска;
- ограничение тока через электроды.
Принцип работы дросселя основан на реактивном сопротивлении катушки индуктивности, которой является дроссель. Индуктивное сопротивление вносит сдвиг фаз между напряжением и током, равный 90º.
Из того, что ограничивающей ток величиной, является индуктивное сопротивление, следует, что дроссели, предназначенные для ламп одной мощности, нельзя использовать для подключения более или менее мощных устройств.
В некоторых пределах возможны допуски. Так, ранее отечественная промышленность выпускала люминесцентные светильники с мощностью 40 Вт. Дроссель 36W для люминесцентных ламп современного производства можно без опасений использовать в цепях питания устаревших светильников и наоборот.
Отличия дросселя от ЭПРА
Дроссельная схема включения люминесцентных источников освещения отличается простотой и высокой надежностью. Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска.
В то же время схема имеет существенные недостатки, которые заставили искать новые решения включения ламп:
- длительное время запуска, которое увеличивается по мере износа лампы или снижения напряжения питания;
- большие искажения формы напряжения питающей сети (cosф<0.5);
- мерцание свечения с удвоенной частотой питающей сети из-за малой инерционности светимости газового разряда;
- большие массо-габаритные характеристики;
- низкочастотный гул из-за вибрации пластин магнитной системы дросселя;
- низкая надежность запуска при отрицательных температурах.
Проверка дросселя ламп дневного света затрудняется тем, что приборы для определения короткозамкнутых витков распространены мало, а при помощи стандартных приборов можно только констатировать факт наличия или отсутствия обрыва.
Для устранения указанных недостатков разработаны схемы электронной пуско-регулирующей аппаратуры (ЭПРА). Работа электронных схем основана на другом принципе формирования высокого напряжения запуска и поддержания горения.
Watch this video on YouTube
Высоковольтный импульс генерируется электронными компонентами, а для поддержки разряда используется высокочастотное напряжение (25-100 кГц). Работа ЭПРА может осуществляться в двух режимах:
- с предварительным подогревом электродов;
- с холодным запуском.
В первом режиме на электроды подается низкое напряжения в течение 0.5-1 секунды для первоначального нагрева. По истечении времени подается высоковольтный импульс, из-за которого происходит зажигание разряда между электродами. Данный режим технически реализуется сложнее, но увеличивает срок службы ламп.
Режим холодного запуска отличается тем, что напряжение запуска подается на непрогретые электроды, вызывая быстрое включение. Такой способ запуска не рекомендован для частого использования, поскольку сильно сокращает срок работы, но его можно использовать даже с лампами с неисправными электродами (с перегоревшими нитями накала).
Схемы с электронным дросселем имеют такие преимущества:
полное отсутствие мерцания;
широкий температурный диапазон использования;
малые искажения формы напряжения сети;
отсутствие акустических шумов;
увеличение срока службы источников освещения;
малые габариты и вес, возможность миниатюрного исполнения;
возможность диммирования — изменения яркости путем управления скважности импульсов питания электродов.
Для чего нужен дроссель
Технические характеристики
Характеристики энергосберегающей лампы предполагают наличие балласта, поглощающего лишнюю мощность в электроцепи. В лампе мощностью 36-40 Вт дроссель забирает около 6 Вт (15%).
Электромагнитные дроссели для ламп люминесцентного типа
Основные функции дросселя:
- подогрев катодов для их подготовки к эмиссии электронов;
- создание напряжения, необходимого для стартового разряда;
- ограничение тока, протекающего по электрической схеме после старта.
В цепи переменного тока дроссель обеспечивает сдвиг фаз между током и напряжением. Величина отставания тока от напряжения, которую вызывает дроссель, указана в его маркировке (cos ϕ). Данная характеристика имеет еще одно название – коэффициент мощности.
Активная мощность определяется по формуле:
P = U х I х cos ϕ, где
U – напряжение,
I – сила тока.
При низком коэффициенте мощности растет потребление реактивной энергии.
Дроссели классифицируются по уровню мощности и шума.
По уровню мощности дроссели делятся на три класса:
- С – с низким уровнем;
- В – с супернизким;
- D – со средним уровнем поглощения.
Различаются дроссели и по уровню шума:
- С – очень низкий;
- А – особо низкий;
- П – пониженный;
- Н – нормальный.
Принцип работы
Устройство в лампе работает в паре со стартером по такому принципу:
- при подаче напряжения на лампу ток попадает на стартер – элемент, состоящий из баллона и конденсатора (в баллоне, заполненном инертным газом, размещены контакты из биметалла);
- под воздействием напряжения происходит ионизация газа, и ток протекает по цепи дросселя. Газ и контакты разогреваются, что приводит к увеличению силы тока до 0,5 А. Следом разогреваются и катоды и освобождаются электроны. Они, в свою очередь, способствуют разогреву ртутных паров, помещенных в трубку лампы;
- как только контакты замыкаются, завершается ионизация. Температура стартера падает, контакты размыкаются.
Наглядное представление работы дросселя
Как выбрать нужный вид
Выбрать дроссель к люминесцентной лампе, в первую очередь обращайте внимание на его мощность: она должна совпадать с мощностью светильника. Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется
Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги
Немаловажную роль при выборе играет и производитель: лучше, если это будет известная компания, продукция которой широко применяется. Покупая дешевые изделия неизвестных изготовителей, вы рискуете напрасно выбросить деньги.
Еще один вопрос, требующий решения: какой дроссель вы хотите купить – электронный или электромагнитный. Цены на них заметно отличаются.
Cтоимость электромагнитного дросселя в зависимости от мощности начинается примерно со 150 рублей (импортный вариант), а
минимальная цена на электронный дроссель составляет около 500 рублей.
Рекомендуем Вам также более подробно ознакомиться с мощностью люминесцентных ламп.
Схема подключения люминесцентных ламп без стартера
Питание от В без дросселя и стартера Дело в том, что стартеры периодически выходят из строя, а дроссели перегорают.
Для работы больше никаких устройств не надо.
Следующая схема позволяет запустить лампу дневного света с перегоревшими пусковыми спиралями мощностью до 40 Вт при использовании лампы меньшей мощности дроссель L1 придется заменить на соответствующий используемой лампе. Это можно заметить по наличию темных пятен люминофора с одной из сторон колбы. На вход подают электропитание.
Индуктивности дросселя должно хватать на оба источника света. Как видно из рисунка ниже, кроме дросселя и стартера в схеме присутствует обычный диоднй мост. Запуск люминесцентной лампы без дросселя и стартера можно осуществить по нескольким рассмотренным схемам.
Читайте дополнительно: Сроки измерения сопротивления заземляющих устройств
Принцип работы газоразрядных люминесцентных ламп
Исключение составляет регулярная замена стартеров, поскольку в их состав входит группа размыкающих контактов для формирования импульсов запуска. Для работы больше никаких устройств не надо. При включении лампы в парах ртути, которыми заполнена пробирка, случается электронный разряд и возникшее при всем этом уф-излучение воздействует на покрытие из люминофора.
Ток в электроцепи проводников и стартера ограничивается только внутренним дроссельным сопротивлением. В случае перегорания одной или двух нитей катодов люминесцентной лампы её можно продолжать эксплуатировать некоторое время, применяя упомянутые схемы с повышенным напряжением. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Схема подключения люминесцентных ламп с дросселем
Во всех используется принцип создания высокого напряжения запуска при помощи умножителя напряжения. Для его преобразования в видимый световой поток стенки колбы покрывают специальным слоем, люминофором. Как только контакты соединились, ток в цепи мгновенно вырастает в раза.
В схеме, приведенной ниже, роль токоограничивающего дросселя выполняет обычная лампа накаливания, мощность которой равна мощности используемой ЛДС. Правильно собранная схема при исправных элементах начинает работать сразу же. Схема ее подключения есть справа. В работающем светильнике его контакты разомкнуты и он никак в ее работе не участвует. Кроме транзистора нам понадобится намотать трёхобмоточный трансформатор на ферритовом кольце или стержне.
Проверка стартера люминесцентной лампы
Рэй перейдет на Темную сторону в «Последнем джедае?
Разнообразие выбора
Чтобы правильно выбрать балласт для ламп дневного света, нужно знать достоинства и недостатки существующих на рынке моделей. Как уже говорилось выше, на сегодняшний день выделяют следующие виды данной продукции:
- электромагнитный. Устройство электромагнитного типа встречается в в обычных ПРА.
- электронный дроссель. Его также еще называют дроссель электрический. На сегодняшний день он считается более совершенным вариантом. Они используются в ЭПРА;
Рассмотрим эти виды данной продукции более детально.Особенностью источников света, где используются электромагнитные виды дроссельных устройств, является их невысокая стоимость, а также простой монтаж и эксплуатация.
Электромагнитный балласт
Однако их недостатки значительно превышают эти преимущества. К недостаткам электромагнитных дросселей можно отнести следующие моменты:
- громоздкие размеры;
- создание шума во время работы;
- имеется эффект стробирования, что может негативным образом сказываться на качестве освещения;
- на такой балласт уходит примерно 25% мощности.
Поэтому такие устройства часто используются для создания уличного типа освещения.
Электронный ПРА
На сегодняшний день именно ЭПРА наиболее часто используются для включения люминесцентных ламп. ЭПРА стали массово появляться примерно 30 лет назад и на сегодняшний день они уже практически полностью вытеснили электромагнитные типы балластов и ПРА. Это связано с тем, что ЭПРА имеют следующие преимущества в эксплуатации:
- увеличенная световая отдача, которая стала возможна благодаря высокочастотному разряду;
- минимизирован эффект стробирования. Это позволило значительно расширить сферу применения данного типа осветительных приспособлений;
- отсутствие шума;
- отсутствие фальстарта;
- увеличение сроков эксплуатации;
- энергопотребление уменьшилось примерно на 30 %;
- КПД находиться примерно на уровне 97%;
- отсутствует необходимость компенсировать реактивную нагрузку.
Как видим, по своим характеристикам ЭПРА является самым выгодным типом устройства для ламп дневного света. Поэтому именно данный тип балласта и следует выбирать для внутреннего устройства люминесцентных лампочек.