Треугольник. формулы и свойства треугольников
Содержание:
- Разметка под фундамент своими руками
- Применение египетского треугольника
- Общая формула
- Что такое «египетский треугольник», и откуда он появился
- Формулы площади треугольника
- Какие существуют альтернативные варианты
- Египетский треугольник
- Биссектрисы треугольника
- Что такое Египетский треугольник на стройке
- Самые крупные и полноводные реки России и их значение
- Египетский треугольник в строительстве
- Чертежи и размеры
- История египетского треугольника
- Глупая ошибка строителей
- Угловой
Разметка под фундамент своими руками
Качество постройки в огромной степени зависит от того, насколько правильно была выполнена разметка под фундамент
Занимаясь этой работой важно с максимальной точностью выдержать все прямые углы. Разметка фундамента своими руками под частный дом может быть выполнена несколькими способами
Чаще всего используются метод «египетского» треугольника и метод двух кривых. Поэтому в этой статье рассмотрим именно их.
Какие инструменты понадобятся?
Производится разметка фундамента своими руками с применением инструментов:
- Рулетки;
- Шнура;
- Гидроуровня и отвеса;
- Помимо этого понадобятся деревянные колышки.
С чего начать разметку?
Итак, как провести разметку фундамента? Для начала следует определить две исходные точки, вбив колышки по углам будущего здания, находящимся на одной прямой со стороны его самой длинной стены. Далее от них нужно будет провести перпендикуляры, таким образом отметив внешний контур смежных стен.
«Египетский треугольник». Самый простой метод
Разметка фундамента своими руками быстрее всего может быть произведена методом «золотого» треугольника, имеющего соотношение длин сторон 5*3*4. Мероприятие при этом выполняется в несколько этапов:
1. Для начала нужно найти длинную веревку и завязать на ней четыре узла. Первый – на конце, второй на расстоянии 3м, третий в четырех метрах от второго и последний в пяти метрах от третьего; 2. После этого самый первый и самый последний узлы соединяют гвоздем. По гвоздю следует вбить и в каждый из промежуточных узлов; 3. При этом длинную сторону получившегося треугольника нужно расположить вдоль линии между двумя уже вбитыми колышками; 4. Вдоль короткой стороны проводят требуемый перпендикуляр; 5. На полученной прямой, вбивают третий колышек на расстоянии равном ширине здания.
Важно: Правильность всех замеров следует обязательно проверить. Для этого между вбитыми кольями по диагоналям натягивают два шнура и связывают в месте пересечения
Paste a VALID AdSense code in Ads Elite Plugin options before activating it.
Метод двух дуг
Разметка фундамента своими силами этим методом выполняется также с использованием веревки. Предварительно от одного из колышков в обе стороны по уже имеющейся прямой отмеряют равные расстояния и отмечают найденные места. Далее к одной из полученных точек прикрепляют веревку с привязанным на противоположном конце гвоздем. Натянув ее проводят дугу напротив того колышка, от которого отмерялись расстояния. Затем веревку крепят ко второму отмеченному месту и чертят еще одну дугу. Из той точки, где дуги пересекутся, проводят линию к колышку. В результате получается прямой угол между ней и уже имеющейся линией.
На заключительном этапе к кольям на высоте будущего фундамента привязывают шнур, поверяя горизонтальность его положения со всех четырех сторон, пользуясь строительным уровнем. Для ленточного фундамента чертят внутренний контур параллельно найденному внешнему и также натягивают шнур.
Совет: В том случае, если траншею предполагается копать с привлечением техники, шнуры лучше не использовать. В процессе работы они могут порваться. Линии между найденными точками в этом случае стоит прочертить песком. Для нахождения центров столбов столбчатого фундамента, от найденных углов вдоль прочерченных линий отмеряют необходимые расстояния и ставят отметки. Далее проверяют прямоугольность углов, получившихся на пересечении линий (соединяющей полученные точки на противоположных сторонах и линии периметра, на которой расположены отметки).
Разметка фундамента своими руками, как можно было заметить – процедура не такая уж и сложная. Самое главное, делать все аккуратно, хорошо натягивать веревку и обязательно проверять полученный результат методом диагоналей.
Применение египетского треугольника
В Древние века в архитектуре и строительстве египетский треугольник пользовался огромной популярностью. Особенно он был необходим, если для построения прямого угла использовали веревку или шнур.
Ведь известно, что отложить прямой угол в пространстве, является довольно таки сложным занятием и поэтому предприимчивые египтяне изобрели интересный способ построения прямого угла. Для этих целей они брали веревку, на которой отмечали узелками двенадцать ровных частей и потом с этой веревки складывали треугольник, со сторонами, которые равнялись 3 , 4 и 5 частям и в итоге без проблем, получали прямоугольный треугольник. Благодаря такому замысловатому инструменту, египтяне с огромной точностью размеряли землю для сельскохозяйственных работ, строили дома и пирамиды.
Вот так посещение Египта и изучение особенностей египетской пирамиды подтолкнуло Пифагора на открытие своей теоремы, которая, кстати, попала в Книгу Рекордов Гиннеса, как теорема, которая имеет самое большое количество доказательств.
Общая формула
S = 0,5 * a * b⋅sin(α) , где a, b — стороны, α — угол между ними.
S = 0,5 * a * h, где a — основание, h — высота.
S = (a * b * c) : (4 * R), где a, b, c — стороны, R — радиус описанной окружности.
4. Площадь треугольника через вписанную окружность и стороны.
S = r * (a + b + c) : 2, где a, b, c — стороны, r — радиус вписанной окружности.
Если учитывать, что (a + b + c) : 2 — это способ поиска полупериметра. Тогда формулу можно записать следующим образом:
S = r * p, где p — полупериметр.
S = a2 : 2 * (sin(α)⋅sin(β)) : sin(180 — (α + β)), где a — сторона, α и β — прилежащие углы, γ — противолежащий угол.
6. Формула Герона для вычисления площади треугольника.
Сначала необходимо подсчитать разность полупериметра и каждой его стороны. Потом найти произведение полученных чисел, умножить результат на полупериметр и найти корень из полученного числа.
S = √ p * (p − a) * (p − b) * (p − c), где a, b, c — стороны, p — полупериметр, который можно найти по формуле: p = (a + b + c) : 2
Что такое «египетский треугольник», и откуда он появился
Придумали подобный способ замеров не древние египтяне, как могло бы показаться, судя по названию. На самом деле таким методом разметки пользовались строители ещё задолго до появления пирамид. Суть метода заключается в том, чтобы разделить квадрат будущего строения на два одинаковых треугольника со сторонами, относящимися друг к другу как 3:4:5.
ФОТО: illvid.dkСтроители в древнем Египте точно знали толк в идеальных сооружениях – их пирамиды стоят до сих пор
Это должен быть прямоугольный треугольник, подчиняющийся теореме Пифагора. Наверняка все помнят её из школьной программы – сумма квадратов катета равна квадрату гипотенузы, и наоборот. Логически при совмещении этих треугольников должен получиться квадрат с идеально одинаковыми диагоналями. И вот тут начинается самое интересное.
ФОТО: prezentacii.infoТеорема Пифагора, наверное, самая запоминающаяся из школьного курса – она имеет около 300 доказательств
Формулы площади треугольника
-
Формула площади треугольника по стороне и высотеПлощадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты
S = 12
S = 12
S = 12 -
Формула площади треугольника по трем сторонам
S = √()()()
где = + + 2 — полупериметр треугльника.
-
Формула площади треугольника по двум сторонам и углу между ними
Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.S = 12
S = 12
S = 12 -
Формула площади треугольника по трем сторонам и радиусу описанной окружности
S = 4R -
Формула площади треугольника по трем сторонам и радиусу вписанной окружностиПлощадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.
S = ·
Какие существуют альтернативные варианты
Как создать прямой угол
Лучшим вариантом смастерить прямой угол является применение угольника или транспортира. Это позволит с минимальными затратами найти необходимые пропорции. Но, основной момент египетского треугольника в его универсальности из-за возможности создать фигуру, не имея под рукой ничего.
В этом деле может пригодиться все, даже печатные издания. Любая книга или даже журнал имеют всегда соотношение сторон, образующее прямой угол. Типографские станки работают всегда точно, чтобы рулон, заправленный в машину резался пропорциональными углами.
Древние инженеры придумывали много способов строительства египетского треугольника и всегда экономили ресурсы.
Поэтому, самым простым и широко применяемым был метод постройки геометрической фигуры с применением обычной веревки. Бралась бечевка и резалась на 12 ровных частей, из которых выкладывалась фигура с пропорциями 3,4 и 5.
Как создать другие углы?
Египетский треугольник в строительном мире нельзя недооценивать. Его свойства однозначно полезны, но без возможности построить углы другого градуса в строительстве невозможно. Чтобы образовался угол в 45 градусов, понадобится рамка или багет, которые распиливаются под углом в 45 градусов и соединяются между собой.
Египетский треугольник
Смотреть что такое «Египетский треугольник» в других словарях:
-
Египетский треугольник — – прямоугольный треугольник с соотношением сторон 3:4:5. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины. Применялся… … Словарь строителя
-
Египетский треугольник — прямоугольный треугольник с отношением сторон 3:4:5 (сумма чисел 3 + 4 + 5 = 12). Землемеры и архитекторы с глубокой древности пользовались соотношением этих чисел для построения прямых углов с помощью верёвки, размеченной узлами на 3/12 и… … Архитектурный словарь
-
Египетский Треугольник — Прямоугольный треугольник с соотношением сторон 3:4:5. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины. Применялся в… … Строительный словарь
-
лунный египетский треугольник — Треугольник, возникающий в центре большого квадрата, построенного на базе трёх лунных обелисков с отношением сторон 3:4:5, при условии, что вся площадь квадрата разделена на серию прямоугольных треугольников с отношением катетов 1:2. E. Egyptian… … Толковый уфологический словарь с эквивалентами на английском и немецком языках
-
Треугольник (значения) — В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия
-
Треугольник Халаиба — Халаибский треугольник مثلث حلايب спорная территория ← … Википедия
-
Египетский крест (астеризм) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
-
Египетский лук — Угловой лук у стрелка на колеснице и простой у пехотинца Египетские луки, как стрелковое оружие прошли определенный путь эволюционного развития от простого из одного вида дерева до сложносоставного («углового») из разных видов… … Википедия
-
Халаибский треугольник — مثلث حلايب спорная территория ← … Википедия
-
Зимний треугольник — красный цвет = зимний треугольник, синий цвет = зимний круг … Википедия
Биссектрисы треугольника
Определение. Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.
Свойства биссектрис треугольника:
- Биссектрисы треугольника пересекаются в одной точке, равноудаленной от трех сторон треугольника, — центре вписанной окружности.
-
Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
AEAB = ECBC
-
Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.
Угол между и ‘ = 90°
- Если в треугольнике две биссектрисы равны, то треугольник — равнобедренный.
Что такое Египетский треугольник на стройке
Египетский треугольник — – прямоугольный треугольник с соотношением сторон 3:4:5. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины. Применялся… … Словарь строителя
Египетский треугольник — прямоугольный треугольник с отношением сторон 3:4:5 (сумма чисел 3 + 4 + 5 = 12). Землемеры и архитекторы с глубокой древности пользовались соотношением этих чисел для построения прямых углов с помощью верёвки, размеченной узлами на 3/12 и… … Архитектурный словарь
Египетский Треугольник — Прямоугольный треугольник с соотношением сторон 3:4:5. Сумма указанных чисел (3+4+5=12) с древних времен использовалась как единица кратности при построении прямых углов с помощью веревки, размеченной узлами на 3/12 и 7/12 ее длины. Применялся в… … Строительный словарь
лунный египетский треугольник — Треугольник, возникающий в центре большого квадрата, построенного на базе трёх лунных обелисков с отношением сторон 3:4:5, при условии, что вся площадь квадрата разделена на серию прямоугольных треугольников с отношением катетов 1:2. E. Egyptian… … Толковый уфологический словарь с эквивалентами на английском и немецком языках
Треугольник (значения) — В Викисловаре есть статья «треугольник» Треугольник в широком смысле объект треугольной формы, либо тройка объектов, попарно связ … Википедия
Треугольник Халаиба — Халаибский треугольник مثلث حلايب спорная территория ← … Википедия
Египетский крест (астеризм) — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия
Египетский лук — Угловой лук у стрелка на колеснице и простой у пехотинца Египетские луки, как стрелковое оружие прошли определенный путь эволюционного развития от простого из одного вида дерева до сложносоставного («углового») из разных видов… … Википедия
Халаибский треугольник — مثلث حلايب спорная территория ← … Википедия
Зимний треугольник — красный цвет = зимний треугольник, синий цвет = зимний круг … Википедия
Самые крупные и полноводные реки России и их значение
Египетский треугольник в строительстве
Свойства этой уникальной геометрической конструкции заключаются в том, что её построение без применения каких-либо инструментов позволяет построить дом с правильными во всех соотношениях углами.
Важно! Конечно, в идеале лучшим вариантом будет использование транспортира или угольника. Итак, качества египетского треугольника позволяют делать правильные во всех соотношениях углы
Стороны конструкции имеют следующее соотношение друг к другу:
Итак, качества египетского треугольника позволяют делать правильные во всех соотношениях углы. Стороны конструкции имеют следующее соотношение друг к другу:
- 5,
- 4,
Чтобы проверить ту ли фигуру вы начертили, используйте хорошо известную ещё со школьной скамьи Теорему Пифагора.
Внимание! Свойства египетского треугольника таковы, что квадрат гипотенузы равен квадратам двух катетов. Для лучшего понимания возьмём приведенную выше зависимость и составим небольшой пример
Умножим пять на пять. В результате чего получим гипотенузу равную 25. Вычислим квадраты двух катетов. Они составят 16 и 9. Соответственно их сумма будет двадцать пять
Для лучшего понимания возьмём приведенную выше зависимость и составим небольшой пример. Умножим пять на пять. В результате чего получим гипотенузу равную 25. Вычислим квадраты двух катетов. Они составят 16 и 9. Соответственно их сумма будет двадцать пять.
Именно поэтому свойства египетского треугольника так часто используются в строительстве. Вам достаточно взять заготовку и прочертить прямую линию. Её длина всегда должна быть кратной 5. Затем нужно наметить один край и отмерять от него линию кратную 4, а от второго 3.
Внимание! Длина каждого отрезка составит 4 и 3 см (при минимальных значениях). Пересечение этих прямых образует прямой угол, равняющийся 90 градусам
Альтернативные способы построить прямой угол на 90 градусов
Как уже упоминалось выше, наилучшим вариантом будет просто взять угольник или транспортир. Эти инструменты позволяют с наименьшими затратами времени и сил добиться нужных пропорций. Главное же свойство египетского треугольника заключается в его универсальности. Фигуру можно построить, не имея в арсенале практически ничего.
Сильно в построении прямого угла помогают простые печатные издания. Возьмите любой журнал или книгу. Дело в том, что в них соотношение сторон всегда составляет ровно 90 градусов. Типографические станки работают очень точно. В противном случае рулон, который заправляется в станок, будет резаться непропорциональными кривыми углами.
Как получить египетский треугольник при помощи верёвки
Свойства этой геометрической фигуры тяжело переоценить. Неудивительно, что инженерами древности было придумано множество способов её образования с использованием минимальных ресурсов.
Одним из самых простых считается метод образования египетского треугольника со всеми его вытекающими свойствами посредством простой верёвки. Возьмите бечёвку и разрежьте её на 12 абсолютно ровных частей. Из них сложите фигуру с пропорциями 3, 4 и 5.
Как построить угол в 45, 30 и 60 градусов
Безусловно, египетский треугольник и его свойства очень полезны при постройке дома. Но без других углов вам обойтись всё-таки не удастся. Чтобы получить угол, равняющийся 45 градусам, возьмите материал рамки или багета. После чего распилите его под углом в сорок пять градусов и состыкуйте половинки друг с другом.
Важно! Для получения нужного наклона вырвите лист бумаги из журнала и согните его. При этом линии изгиба будут проходить через угол
Края должны совпасть.
Как видите, свойства фигуры позволяют гораздо проще и быстрее построить геометрический конструкт. Чтобы добиться соотношения сторон в 60 градусов нужно взять один треугольник на 30º и второй такой же. Обычно подобные пропорции необходимы при создании определённых декоративных элементов.
Внимание! Соотношение сторон на 30º нужно, чтобы сделать шестиугольники. Их свойства востребованы в столярных заготовках
Чертежи и размеры
Составляя чертежи садовых качелей, надо показывать их габариты в трех плоскостях. Начинают с суммарной ширины (которая определяется по фасадной части конструкции). Вторая цифра показывает, какова глубина каркаса. Третье число означает высоту. Нежелательно использовать большие качели в уличных навесах или беседках.
Но в любом случае требуется ориентироваться на особенности конкретного ландшафта или помещения, чтобы схема была составлена правильно
Если предстоит поставить качели просто под деревьями, где есть свободное место, можно обращать внимание на одну ширину. При этом стоит учитывать, что сиденье на 400-500 мм меньше, чем расстояние между боковыми стойками
Планируя сделать подвесную скамейку для семейной пары с 1 ребенком, можно ограничиться шириной 1,6 м. А вот для троих взрослых потребуется уже от 180 до 200 см.
Точно такие же габариты стараются придать задним сиденьям автомобилей, так как они позволяют свободно рассаживаться всем без намека на стеснение. Если планируется пользоваться качелями в одиночку, хватит и сиденья шириной 1 м. Делать конструкцию крупнее — значит, уже тратить зря строительные материалы. В чертежах требуется отразить толщину круглых труб для изготовления стоек и иных деталей. Их диаметр может варьироваться от 3,8 до 6 см.
Допустимая толщина стенок колеблется от 0,1 до 0,15 см. Увеличивая эти показатели, можно нарастить прочность. Однако общая плата тоже существенно вырастает. В частном саду уместно монтировать качели из трубы сечением 3,8-4,5 см. При этом толщина трубки может ограничиться 1,2 мм. Более серьезные параметры нужны уже для качелей, вывешиваемых в общественных местах.
На чертеже А-образного каркаса указывают:
- фланцы;
- рым-гайки;
- простые гайки;
- болты;
- стягивающие раму элементы;
- перекладины;
- стойки опорных рам.
История египетского треугольника
Создателем этой геометрической конструкции является один из величайших математиков древности Пифагор. Именно благодаря его математическим изысканиям мы можем в полной мере использовать все свойства данного геометрического построения в строительстве.
Важно! Принято считать, что толчком к открытию этой геометрической фигуры послужило путешествие Пифагора в Африку, где он увидел египетские пирамиды. Возможно, именно они стали прообразом данной конструкции
Можно предположить, что математические навыки позволили Пифагору заметить закономерность в формах строения. Дальнейшее развитие событий можно легко представить. Базовый анализ и построение выводов создали одну из самых значимых фигур в истории. Скорее всего, в качестве прообраза была выбрана именно пирамида Хеопса из-за своих практически совершенных пропорций.
Глупая ошибка строителей
«Египетский треугольник» действительно может помочь в разметке периметра фундамента, однако применение этого метода требует сохранения чётких пропорций. Небольшое отклонение от них − и угол уже не будет прямым. А это приведёт к разнице длин стен. Не единичны случаи, когда при идеальном совпадении длин диагоналей стены получаются разными. Ведь если вдуматься, то трапеция также подходит под заданные параметры, её диагонали равны, в то время как верхняя и нижняя сторона имеют разные длины.
ФОТО: youc.irПравильная трапеция также имеет одинаковые длины диагоналей, однако на квадрат она явно не тянет
Угловой
Специальные угловые треугольники, вписанные в единичный круг, удобны для визуализации и запоминания тригонометрических функций, кратных 30 и 45 градусам.
Специальные прямоугольные треугольники «на основе углов» определяются соотношением углов, из которых состоит треугольник. Углы этих треугольников таковы, что больший (прямой) угол, который составляет 90 градусов илиπ2 радиан равен сумме двух других углов.
Длины сторон обычно вычисляются на основе единичной окружности или других геометрических методов. Такой подход можно использовать для быстрого воспроизведения значений тригонометрических функций для углов 30 °, 45 ° и 60 °.
Специальные треугольники используются для помощи в вычислении общих тригонометрических функций, как показано ниже:
градусы | радианы | углы | повороты | грех | потому что | загар | котан |
---|---|---|---|---|---|---|---|
0 ° | 0 г | √ 2 = 0 | √ 42 = 1 | неопределенный | |||
30 ° | π6 | 33 +13грамм | 112 | √ 12 знак равно 12 | √ 32 | 1√ 3 | √ 3 |
45 ° | π4 | 50 г | 18 | √ 22 знак равно 1√ 2 | √ 22 знак равно 1√ 2 | 1 | 1 |
60 ° | π3 | 66 +23грамм | 16 | √ 32 | √ 12 знак равно 12 | √ 3 | 1√ 3 |
90 ° | π2 | 100 г | 14 | √ 42 = 1 | √ 2 = 0 | неопределенный |
45 ° –45 ° –90 °
30 ° –60 ° –90 °
Треугольник 45 ° –45 ° –90 °, треугольник 30 ° –60 ° –90 ° и равносторонний / равносторонний (60 ° –60 ° –60 °) треугольник — это три треугольника Мёбиуса на плоскости, что означает, что они разбейте плоскость мозаикой с помощью отражений в их сторонах; см. группу «Треугольник» .
45 ° –45 ° –90 ° треугольник
Установить квадрат
Длины сторон треугольника 45 ° –45 ° –90 °
В плоской геометрии построение диагонали квадрата приводит к треугольнику, три угла которого находятся в соотношении 1: 1: 2, что в сумме дает 180 ° или π радиан. Следовательно, углы составляют соответственно 45 ° (π4), 45 ° (π4) и 90 ° (π2). Стороны этого треугольника находятся в соотношении 1: 1: √ 2 , что непосредственно следует из теоремы Пифагора .
Из всех прямоугольных треугольников треугольник 45 ° –45 ° –90 ° имеет наименьшее отношение гипотенузы к сумме катетов, а именно √ 22. и наибольшее отношение высоты от гипотенузы к сумме катетов, а именно√ 24.
Треугольники с этими углами — единственные возможные прямоугольные треугольники, которые также являются равнобедренными треугольниками в евклидовой геометрии . Однако в сферической геометрии и гиперболической геометрии существует бесконечно много различных форм прямоугольных равнобедренных треугольников.
Треугольник 30 ° –60 ° –90 °
Установить квадрат
Стороны треугольника 30 ° –60 ° –90 °
Это треугольник, три угла которого находятся в соотношении 1: 2: 3 и составляют соответственно 30 ° (π6), 60 ° (π3) и 90 ° (π2). Стороны находятся в соотношении 1: √ 3 : 2.
Доказательство этого факта ясно с помощью тригонометрии . Геометрическое доказательство:
- Нарисуйте равносторонний треугольник ABC со стороной 2 и точкой D в качестве середины отрезка BC . Нарисуйте линию высоты от A до D . Тогда ABD — это треугольник 30 ° –60 ° –90 ° с гипотенузой длины 2 и основанием BD длины 1.
- Тот факт, что оставшаяся катета AD имеет длину √ 3, немедленно следует из теоремы Пифагора .
Треугольник 30 ° –60 ° –90 ° — единственный прямоугольный треугольник, углы которого находятся в арифметической прогрессии. Доказательство этого факта простое и следует из того факта, что если α , α + δ , α + 2 δ — углы в прогрессии, то сумма углов 3 α + 3 δ = 180 °. После деления на 3 угол α + δ должен составлять 60 °. Прямой угол равен 90 °, а оставшийся угол равен 30 °.