Как рассчитать площадь: формулы, примеры расчетов

Содержание:

Площадь нежилого здания, сооружения

Как подготовиться к расчетам

Проведение подготовительных манипуляций заключается в подготовке места для измерений. Также необходимо подготовить инструмент и специальные принадлежности. Лучше если комната будет свободной от посторонних предметов. Часто такое случается при замерах в новом доме или во время проведения ремонта. Замеры длины сторон производятся вдоль стенок. При этом нужно освободить хотя-бы участки, для свободного проведения рулеткой. Результаты замеров можно сразу же перенести на схему. Обязательно следует проверить прямоугольности комнаты. Для этого выполняется замер диагональных линий.

Особенности замеров с учетом линий коммуникаций

Кроме рулетки вам может понадобиться специальная линейка для проверки прямых линий. Это может быть строительный уровень или правило. Иногда необходим строительный угольник больших размеров. Как вариант, самодельный циркуль. Можно использовать кусок шнура, привязанный к острому штырю. Для пола можно использовать специальные принадлежности для замеров. Для этого подойдет маркер, мел или скотч. Замеры выполняйте несколько раз. Это позволит избежать ошибки. Следите, чтобы лента для проведения замеров не провисала. Помните, что на многие измерительные инструменты наносится две шкалы. Нельзя путать метрическую систему и дюймовую.

Лазерное приспособление заметно облегчает работу

Перед замерами набросайте простой план – схему на бумаге. Это позволит правильно распределить все замеры. Стоит учитывать, что многие формулы расчетов очень сложные. В этом случае посчитать в столбик не получится. Чтобы посчитать без ошибок, можно воспользоваться программой Excel.

На схеме показаны все необходимые замеры для правильных расчетов

Несколько советов

  • Нужно при проведении расчётов все цифры наносить на план. Таким образом сохранится не только результат, но и промежуточные вычисления, которые могут пригодится при проведении ремонтных работ в будущем. 
  • При вычислении площади нужно учитывать, что не всегда необходима полная величина. Например, обои могут клеить не только на всю стену, а на их часть. Класть плитку могут до потолка либо только до определённой высоты. Поэтому нужно точно определить, как высчитать квадратуру дома с учётом конкретного плана ремонта. 

Как сделать замеры – можно посмотреть в видеоролике:

Коротко о главном

Для того, чтобы точно знать, сколько необходимо стройматериалов для проведения работ, нужно учитывать площади стен, пола и потолка, а также нормы расхода стройматериалов. Среднюю величину расхода можно узнать, спросив у продавцов, а квадратуру дома необходимо измерить самостоятельно. Для этого нужно воспользоваться знаниями из элементарной геометрии. При вычислении площади сложных фигурных поверхностей их разбивают на простые части, делают необходимые вычисления, затем суммируют их. 

Как рассчитать площадь прямоугольника, если мы знаем только одну сторону и диагональ

Можно определить площадь прямоугольника другим способом. Формула, которая была изложена ранее, не является единственным методом, который можно использовать. Действительно, вполне возможно сделать это по-другому. Для этого нам нужно будет, по крайней мере, измерить только одну сторону и необходимо знать длину диагонали. В этом случае мы делаем расчет, используя теорему Пифагора.

Что такое теорема Пифагора

Это формула, которая используется для определения длины третьей стороны прямоугольного треугольника, когда вы уже знаете значение двух других его сторон.

Обратите внимание, что прямоугольник состоит из двух прямоугольных треугольников. Действительно, диагональ представляет гипотенузу этого типа треугольника

Теорема Пифагора

Кроме того, это также самая длинная сторона, которую можно найти на рисунке. Длина и ширина, с другой стороны, представляют две другие его стороны (скажем, смежные стороны). Это причина, почему можно использовать эту формулу для определения площади прямоугольника.

Теорема Пифагора основана на довольно простом уравнении, которое выглядит следующим образом: a² + b² = c². Где a и b используются для представления двух соседних сторон — катетов прямоугольного треугольника, а c представляет гипотенузу треугольника.

Чтобы полностью понять использование этой формулы, мы начнем с очень конкретного примера. Для этого предположим, что диагональ прямоугольника 10 см, а другая сторона 6 см. Если мы ссылаемся на формулу a² + b² = c², следовательно, сторона «a» составляет 6 см, а гипотенуза «c» — 10 см. Теперь нам нужно просто заменить буквенные значения числовыми значениями, которые у нас есть. Что дает нам:

a² + b² = c²6² + b² = 10²b² = 10² — 6²b² = 100 — 36b² = 64b= 8Мы получаем длину смежной стороны прямоугольника «b», которая равна 8 см. Теперь мы можем рассчитать площадь прямоугольника:

S = 8 см х 6 смСледовательно, S = 48 см².

Технология производства полиэстера

Полиэстер для спортивной одежды При создании полиэстера применяются разные составляющие продуктов, получаемых при нефтепереработке. Это довольно сложный химический процесс, в котором участвуют этиленгликоль и диметилтерефталат. Дигликолевый эфир при нагреве до +270 градусов проходит стадию поликонденсации (при этом процессе образуются высокомолекулярные соединения). Волокна, полученные в результате расплава, обрабатываются окисью этилена, который получен путем каталитического окисления.

После проведения ряда химических процессов образуется полистирол. Из него в свою очередь путем расплавления и охлаждения воздухом производят волокна полиэстера. Следующий этап – это растяжение полученных синтетических нитей до необходимой толщины и прочности.

Полотно полиэстера создают путем переплетения поперечных и основных нитей, но такую ткань редко используют. Чаще в процессе плетения к волокнам полиэстера добавляют натуральные или синтетические нити. Это придает материалу ряд уникальных свойств.

Площадь квартиры

Многие утверждают, что ремонт – процесс, который практически невозможно закончить, его можно только приостановить

Несмотря на это, чтобы не превратить незначительный ремонт в глобальный, очень важно правильно рассчитать все необходимые цифры и провести нужные расчеты, одним из которых является измерение квадратуры

Теперь вы знаете, как найти площадь комнаты зная длину и ширину и после всех выполненных манипуляций, достаточно просто сложить полученные данные по комнатам, тогда можно получить квадратуру всей квартиры.

Такой процесс требуется для закупки материалов. Последним этапом будет только проработка плана, где будут указаны все длины, ширина оконных и дверных рам и т.д. Это необходимо например для укладки напольной плитки или ламината. Такая схема потребуется при укладке теплого пола.

Существуют и современные приложения на смартфон или сервисы в интернете, которые упростят эти моменты и помогут найти площадь.

Как посчитать площадь комнаты в квадратных метрах

Рассчитать площадь комнаты, часто надо при закупке материалов для строительства или ремонта. Например, некоторые виды напольного покрытия продают на квадраты (то есть, на квадратные метры). Чтобы правильно рассчитать его количество, надо знать площадь пола (часто говорят квадратура комнаты, что по сути одно и то же).

Можно найти площадь комнаты зная длину и ширину

Измерения

Берем рулетку, листок бумаги, карандаш и калькулятор. На бумаге рисуем план комнаты. При помощи рулетки измеряем длины всех стен. Измерения проводим на уровне пола — если постройка старая, велика вероятность того, что стены «завалены» в ту или другую сторону. Тем более что определяем площадь пола, так что логичнее измерять вплотную к стенам, но мерную ленту тянуть по полу.

Схема комнаты с нанесенными измерениями

На схеме проставляем измерения. Лучше всего в метрах. Точность измерений — до сантиметра. Это понадобится при покупке материалов, которые продаются на погонные метры — линолеум, ковролин или другие рулонные покрытия. Чтобы посчитать площадь комнаты в квадратных метрах, тоже желательна такая точность. Хоть можно, конечно, и округлить. Но лучше это сделать уже получив результат.

Как высчитать квадратуру комнаты

Имея длину и ширину комнаты прямоугольной формы, цифры надо просто перемножить. На рисунке выше такая комната нарисована справа. Длинная стена равна 7 м, короткая — 4 метрам. Перемножаем 7*4 = 28 квадратных метров. Это и есть площадь этого помещения, пола. Другими словами, мы нашли квадратуру. Используя эту цифру, можно покупать напольное покрытие. Но надо иметь в виду, что требуется некоторый запас — на подгонку, подрезку. Чем сложнее схема укладки и чем больше фрагменты напольного покрытия, тем запас должен быть больше.

Часто комната не прямоугольная, а имеет более сложную форму. Чтобы посчитать площадь такой комнаты в квадратных метрах, ее разбивают на простые фигуры. Если удается — на прямоугольники или квадраты. Например, Г-образную комнату разбивают на два прямоугольника. Затем считают площадь каждого прямоугольника отдельно, потом их складывают.

Как найти площадь комнаты сложной формы

  • Считаем большой прямоугольник: 5 м * 4,35 м = 21,75 м².
  • Находим квадратуру маленького: 2,5 м * 2,65 м = 6,625 м².
  • Площадь пола в этом помещении равна сумме 21,75 м² + 6,625 м² = 28,375 м².

При покупке материалов, проще пользоваться округленными значениями. Чаще всего говорят, что в этом помещении 28,4 квадрата.

Если помещение имеет участок «срезанной» стены, как на рисунке ниже, проще всего дорисовать прямоугольник так, чтобы косая делила его на два треугольника. В этом случае снова-таки получаем Г-образную комнату. Как высчитать ее площадь уже знаем.

Получается, ищем площадь трех прямоугольников

А недостающий участок — это половина маленького прямоугольника. То есть, находим площадь этого маленького прямоугольника, делим ее пополам и прибавляем к размерам Г-образного участка.

Приведем пример расчета подставляя произвольные значения:

  • Большой прямоугольник: 1,75 м *1,93 м = 3,3775 м². Для простоты округлим до 3,38 м².
  • Средний прямоугольник: 1,18 м * 0,57 м = 0,6726 м².  Снова округлим до 0,67 м².
  • Самый маленький прямоугольник (в нашем случае это будет квадрат): 0,57 м *0,57 м = 0,3249 м2, после округления имеем 0,33 м².
  • Чтобы найти общую площадь складываем квадратуру двух прямоугольников и добавляем половину площади последнего, самого маленького участка. 3,38 + 0,67 +0,33/2 = 3,38 + 0,67 +0,17 = 4,22 м².

Такая методика — разбиение на простые фигуры — самый удобный и простой метод. Всегда стоит стараться преобразовать сложную фигуру в набор простых. Правда, измерений может потребоваться больше.

https://youtube.com/watch?v=YL07nZH5ueY

Определение понятия площади

Множество измеримо по Жордану, если внутренняя мера Жордана равна внешней мере Жордана

Площадь — функция, которая обладает следующими свойствами:

  • Положительность, то есть площадь неотрицательна;
  • Аддитивность, то есть площадь фигуры равна сумме площадей составляющих её фигур без общих внутренних точек;
  • Инвариантность, то есть площади конгруэнтных фигур равны;
  • Нормированность, то есть площадь единичного квадрата равна 1.

Из данного определения площади следует её монотонность, то есть площадь части фигуры меньше площади всей фигуры.

Первоначально определение площади было сформулировано для многоугольников, затем оно было расширено на квадрируемые фигуры. Квадрируемой называется такая фигура, которую можно вписать в многоугольник и в которую можно вписать многоугольник, причём площади обоих многоугольников отличаются на произвольно малую величину. Такие фигуры называются также измеримыми по Жордану. Для фигур на плоскости, не состоящих из целого количества единичных квадратов, площадь определяется с помощью предельного перехода; при этом требуется, чтобы как фигура, так и её граница были кусочно-гладкими. Существуют неквадрируемые плоские фигуры. Предложенное выше аксиоматическое определение площади в случае плоских фигур обычно дополняют конструктивным, при котором с помощью палетки осуществляется собственно вычисление площади. При этом для более точных вычислений на последующих шагах используют палетки, у которых длина стороны квадрата в десять раз меньше длины у предыдущей палетки.

Площадь квадрируемой плоской фигуры существует и единственна. Понятие площади, распространённое на более общие множества, привело к определению множеств, измеримых по Лебегу, которыми занимается теория меры. В дальнейшем возникают более общие классы, для которых свойства площади не гарантируют её единственность.

Под площадью в обобщённом смысле понимают численную характеристику k-мерной поверхности в n-мерном пространстве (евклидовом или римановом), в частности, характеристику двумерной поверхности в трёхмерном пространстве.

Площадь комнаты в квадратных метрах

Посчитать несложно, требуется только вспомнить простейшие формулы а также провести измерения. Для этого нужны будут:

  • Рулетка. Лучше — с фиксатором, но подойдет и обычная.
  • Бумага и карандаш или ручка.
  • Калькулятор (или считайте в столбик или в уме).

Набор инструментов нехитрый, найдется в каждом хозяйстве. Проще измерения проводить с помощником, но можно справиться и самостоятельно.

Для начала надо измерить длину стен. Делать это желательно вдоль стен, но если все они заставлены тяжелой мебелью, можно проводить измерения и посередине. Только в этом случае следите чтобы лента рулетки лежала вдоль стен, а не наискосок — погрешность измерений будет меньше.

Прямоугольная комната

Если помещение правильной формы, без выступающих частей, вычислить площадь комнаты просто. Измеряете длину и ширину, записываете на бумажке. Цифры пишите в метрах, после запятой ставите сантиметры. Например, длина 4,35 м (430 см), ширина 3,25 м (325 см).

Как высчитать площадь комнаты

Найденные цифры перемножаем, получаем площадь комнаты в квадратных метрах. Если обратимся к нашему примеру, то получится следующее: 4,35 м * 3,25 м = 14,1375 м². В данной величине оставляют обычно две цифры после запятой, значит округляем. Итого, рассчитанная квадратура комнаты 14,14 квадратных метров.

Помещение неправильной формы

Если надо высчитать площадь комнаты неправильной формы, ее разбивают на простые фигуры — квадраты, прямоугольники, треугольники. Потом измеряют все нужные размеры, производят расчеты по известным формулам (есть в таблице чуть ниже).

Перед тем как посчитать площадь комнаты, тоже проводим изменения. Только в этом случае цифр будет не две, а четыре: добавится еще длина и ширина выступа. Габариты обоих кусков считаются отдельно.

Один из примеров — на фото. Так как и то, и другое — прямоугольник, площадь считается по той же формуле: длину умножаем на ширину. Найденную цифру надо отнять или прибавить к размеру помещения — в зависимости от конфигурации.

Площадь комнаты сложной формы

Покажем на этом примере как посчитать площадь комнаты с выступом (изображена на фото выше):

  1. Считаем квадратуру без выступа: 3,6 м * 8,5 м = 30,6 м².
  2. Считаем габариты выступающей части: 3,25 м * 0,8 м = 2,6 м².
  3. Складываем две величины: 30,6 м². + 2,6 м². = 33,2 м².

Еще бывают помещения со скошенными стенами. В этом случае разбиваем ее так, чтобы получились прямоугольники и треугольник (как на рисунке ниже). Как видите, для данного случая требуется иметь пять размеров. Разбить можно было по-другому, поставив вертикальную, а не горизонтальную черту

Это не важно. Просто требуется набор простых фигур, а способ их выделения произвольный

Как посчитать площадь комнаты неправильной формы

В этом случае порядок вычислений такой:

  1. Считаем большую прямоугольную часть: 6,4 м * 1,4 м = 8,96 м². Если округлить, получим 9, 0 м².
  2. Высчитываем малый прямоугольник: 2,7 м * 1,9 м = 5,13 м². Округляем, получаем 5,1 м².
  3. Считаем площадь треугольника. Так как он с прямым углом, то равен половине площади прямоугольника с такими же размерами. (1,3 м * 1,9 м) / 2 = 1,235 м². После округления получаем 1,2 кв. м.
  4. Теперь все складываем чтобы найти общую площадь комнаты: 9,0 + 5,1 + 1,2 = 15,3 м².

Планировка помещений может быть очень разнообразной, но общий принцип вы поняли: делим на простые фигуры, измеряем все требуемые размеры, высчитываем квадратуру каждого фрагмента, потом все складываем.

Формулы расчета площади и периметра простых геометрических фигур

Еще одно важное замечание: площадь комнаты, пола и потолка — это все одинаковые величины. Отличия могут быть если есть какие-то полу-колоны, не доходящие до потолка

Тогда из общей квадратуры вычитается квадратура этих элементов. В результате получаем площадь пола.

Ткань поливискоза: описание и свойства

Свойства ткани

Полиэстер – это особый вид синтетической ткани, произведенный из полиэфирных волокон. По внешнему виду он напоминает шерсть, а по характеристикам очень схож с хлопком. Ткань, сделанная из 100% полиэстера:

  • очень прочная и износостойкая;
  • легкая, хорошо сохраняет форму;
  • мало мнется;
  • устойчива к воздействию тепла и света;
  • легко стирается;
  • не нуждается в специальном уходе.

К тому же этот материал быстро высыхает после стирки и производит охлаждающий эффект. Особенностью полиэстера считается его способность закреплять форму при нагревании. Этим преимуществом очень широко пользуются дизайнеры при создании складок, декорировании штор и занавесок.

Такая ткань часто используется для пошива спортивных костюмов. Но не стоит ее применять для пошива летней одежды в силу ее недостаточной воздухопроницаемости. Если же вы все-таки решили выбрать наряд из этого материала, то выбирайте изделия с разрезами и декольте, более открытые, которые будут хорошо пропускать воздух. Кроме этого, из полиэстера делают нижнее белье, шторы, портьеры, занавески, пальто, плащи, куртки, женские чулки.

Полиэстер очень хорошо переносит воздействие ультрафиолета, предотвращен от порчи молью и другими вредителями, устойчив к пятнам. Изделия из такой ткани прослужат вам очень долго и не потеряют яркости и презентабельного внешнего вида. Элементы из полиэстера добавляют во многие виды одежды, поскольку он обладает хорошим антистатическим эффектом.

Особенности измерения квадратных метров квартиры

Осуществляя измерения квадратных метров комнаты необходимо учитывать следующие рекомендации: Измерять ширину стен лучше всего по линии потолка или пола, так значения будут более правдивыми; Не стоит полагаться на приблизительные расчеты или установленные ранее величины; Для того чтобы вычислить сумму площадей всей комнаты нужно сложить площади всей комнаты, которые вычисляются для каждой стены;

Выполняя вычисления площади, обязательно стоит вычитать излишки. Для тех, кто не знает, как посчитать, сколько метров стена сейчас создано множество программ, которые можно скачать для этих целей из интернета.

Как показывает практика, ничего сверхъестественного в подобных расчетах нет. Сделать их можно самостоятельно не прибегая к помощи специалистов. Для того чтобы перевести длину и ширину в квадратные метры порой просто необходимо вспомнить школьную программу. Возьмите на заметку! В том случае если при измерении стен выявляется наличие впадин или выпуклостей, то необходимо к высоте и ширине накинуть несколько сантиметров.

Еще несколько советов

Прежде чем посчитать квадратуру жилого пространства, возьмите на заметку несколько важных нюансов:

  • Основной единицей измерения S являются квадратные метры;
  • Если оконный, или дверной проем в стене, почти всегда можно измерить за 1 раз, то в случае с полом и потолком все действия проходят в определенной последовательности. Разложите рулетку, сделайте отметку там, где она закончилась, потом снова приложите ее к обозначенной точке и продолжите измерения. Делайте так до тех пор, пока не измерите всю длину, а затем сложите полученные измерения;
  • Если полученная длина составляет больше 1 м, то считать нужно и сантиметры, и метры;
  • Длину стены лучше измерять по плинтусу. Для удобства воспользуйтесь помощью напарника;
  • Вычисляя квадратные метры пола, стен или потолка, будьте предельно внимательным. Если вы пользуетесь обычной рулеткой, проследите за тем, чтобы она была ровной, а фиксатор не сползал с точки отсчета. В случае с лазерным инструментом убедитесь в том, что луч расположен перпендикулярно стене – в противном случае погрешность в результатах будет слишком большой;
  • Как посчитать площадь комнаты, если ее длина составляет чуть больше 1 м? При выполнении таких подсчетов округлите полученное число до ближайшего сантиметра, а миллиметры оставьте;
  • Обязательно переведите сантиметры в метры. 1 см = 0,01 м, поэтому для перевода достаточно переставить запятую на 2 цифры влево (например: 2 м 35 см = 2,35 м, 8 см = 0,08 м);
  • Чтобы получить максимально точные показатели, измеряйте высоту стены в 3 местах — в начале, конце и посредине. Если полученные цифры будут слегка отличаться (так часто бывает в старых постройках), берите среднее арифметическое (К + T + M / 3);
  • При определенных расчетах нужно предоставить объем комнаты (так называемую кубатуру). Чтобы узнать эту величину, достаточно перемножить ширину, длину и высоту помещения;
  • Тем, кто не уверен в правильности своих подсчетов, советуем воспользоваться онлайн калькулятором;
  • При планировании покупок нужно учитывать не только размеры данного помещения, но и особенности применения тех или иных строительных материалов. Это позволит избежать большого количества отходов.

Как видите, в нахождении площади того или иного помещения нет абсолютно ничего сложного. Главное — не спешить и оставаться предельно внимательным. Удачи вам в подсчетах!

Мне нравится1Не нравится

Читайте далее:

Расчет гипсокартона для стен: калькулятор, формулы

Как сделать расчет рулонов обоев, точный калькулятор расчета

Расход затирки для плитки на 1 м<sup>2</sup> — калькулятор, формула расчета

Расчет гипсокартона на перегородку — нормы расхода, калькулятор

Калькулятор расчета базового обмена веществ, самые точные формулы BMR

Калькулятор расчета гипсокартона на потолок

Расчёт площади пола, потолка и стен квартиры

В процессе ремонта, для того чтобы рассчитать точное количество необходимого материала и стоимость отделочных работ в первую очередь нужно вспомнить о том, как определить квадратный метр стены, вычислить площадь полов и потолка. Все эти вычисления будут зависеть не только от формы комнаты, но и от наличия окон и дверей. В том случае если комната прямоугольная, то вычисления квадратного метра будет выполняться по следующим формулам:

Для того чтобы узнать площадь пола и потолка требуется умножить ее длину на ширину; Для вычисления периметра, то есть, чтобы узнать общую длину стен нужно длину и ширину сложить, а потом умножить на два;

Чтобы выполнить расчет площади стен комнаты потребуется умножить периметр на высоту и вычесть из полученного результата площадь дверных и оконных проемов. Но так как большинство стен оснащены окнами или дверью, то для того чтобы посчитать ее квадратные метры необходимо пользоваться формулой. Рассчитать кв.м. можно по следующей схеме:Площадь стены = периметр х высоту – ширина проема х на высоту.

Как найти площадь многоугольника

Все, что имеет больше двух углов, является многоугольником, в том числе и треугольник. Рассмотрим, как найти площадь многоугольников.

1

Как найти площадь многоугольника – треугольник

  • S = 1/2×h×b, где h – высота, а b – сторона.
  • S = 1/2 a×b×sinα, где а и b – стороны треугольника, а sinα – синус угла между ними.
  • S = √p×(p-a)×(p-b)×(p-c), где p – половина периметра, а, b, c – стороны. Если известны все стороны треугольника, то найти площадь можно именно по этой формуле.
  • S = r×p, где r – радиус вписанной окружности, а p – половина периметра. Если в треугольник вписана окружность, то для нахождения площади можно использовать эту формулу.
  • S = abc/4R, где a, b, c – стороны треугольника, а R – радиус описанной окружности. Если треугольник вписан в окружность, для нахождения площади треугольника можно использовать эту формулу.

Прямоугольный треугольник

  • S = 1/2×ab, где a и b – катеты прямоугольного треугольника.
  • S = d×e, где d и e отрезки гипотенузы, образованные при касании вписанной окружности об гипотенузу.
  • S = (p-a)×(p-b), где p – половина периметра, а и b – катеты.

Равнобедренный треугольник

  • S = 1/2×a²×sina, где а – бедро треугольника, sina же – угол между бедрами.
  • S = b²/4tgα/2, где b – основание треугольника, а tgα – угол между бедрами.

Равносторонний треугольник

  • S = √3×a²/4, где а – сторона треугольника (любая, так как в равностороннем треугольнике все стороны равны).
  • S = 3√3×R²/4, где R – радиус окружности, в которую вписан треугольник.
  • S = 3√3×r², где r – радиус окружности, которая вписана в треугольник.
  • S = h²/√3, где h – высота равностороннего треугольника.

2

Как найти площадь многоугольника – квадрат

  • S = a², а – сторона квадрата. Так как все стороны квадрата равны, достаточно умножить одну его сторону на другую.
  • S = d²/2, где d – диагональ квадрата.

3

Как найти площадь многоугольника – прямоугольник

  • S = a×b, где a и b – стороны прямоугольника. Так как противолежащие стороны в прямоугольнике равны, достаточно умножить одну его сторону (длину) на не противолежащую, перпендикулярную сторону (ширину).
  • S = a²+b²=c², где a – ширина, b – длина, а c – диагональ. Диагональ делит прямоугольник на два прямоугольных треугольника и если в условии задачи дана одна сторона прямоугольника и его диагональ, несложно будет найти и третью сторону, использую теорему Пифагора. После того как мы найдем эту сторону, ищем площадь по стандартной формуле a×b. Пример: Ширина прямоугольника – 3см, диагональ – 5 см. Найти площадь. Пишем 3² + x² = 5².  x² = 16 => x = 4. S = a×b = 3×4=12. Ответ: S прямоугольника = 12см²

4

Как найти площадь многоугольника – трапеция

  • S = (a+b)×h/2, где a – маленькое, b – большое основание трапеции, h – высота.
  • S = h×m, где h – высота, m – средняя линия трапеции, равная половине суммы оснований – 1/2×(a+b).
  • S = 1/2×d1×d2×sinα, где d1 и d2 – диагонали трапеции, а sinα – синус угла между ними.
  • S = a+b/2×√c²-((b-a)²+c²-d²/2(b-a))², где a и b – основания трапеции, c и d – остальные две стороны.

S = 4r²/sinα, где r – радиус вписанной окружности, а sinα – синус угла между стороной и основанием.

5

Площадь правильного многоугольника

  • S = r×p = 1/2×r×n×a, где r – радиус вписанной окружности, p – половина периметра. Для того чтобы найти площадь любого правильного многоугольника, нужно разбить его на равные треугольники с общей вершиной в центре вписанной окружности.
  • S = n×a²/4tg(360°/2n), где n – число сторон правильного многоугольника, а – длина стороны.Также вычислить площадь правильного многоугольника поможет данный онлайн сервис. Просто вставьте нужное значение и получите ответ.

6

Площадь неправильного многоугольника

Площадь неправильного многоугольника можно найти с помощью координат его вершин. Если в условии задачи даны вышеупомянутые координаты, то выполняем следующее:

  • Составляем таблицу указывая букву, обозначающую вершину и соответствующие координаты (x; y).
  • Умножаем значение x одной вершины на значение y второй и так далее.
  • Складываем все значение, получаем какое-то число.

Составляем точно такую таблицу, по такому же принципу умножаем y координату одной вершины на x координату второй, складываем получившиеся значения.

От суммы значений первой таблицы отнимаем сумму значений второй таблицы.

Полученное число делим на 2 и тем самым находим площадь неправильного многоугольника.

Первая полоса

Беременность

Как не набрать лишний вес во время беременности

Самые крупные и полноводные реки России и их значение

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector