Виды защиты металла от коррозии: инструкции и советы +видео

Содержание:

Как обеспечить протекторную защиту

Покрытие труб специальными составами — это задача не только производителя, в процессе эксплуатации конструкции обеспечение защитных свойств тоже должно выполняться. Всего существует несколько способов защиты металла от воздействия агрессивных сред:

  • химическая обработка;
  • покрытие стенок специальными составами;
  • защита от блуждающих токов;
  • подведение катода или анода.

О пассивных и активных способах

Антикоррозионная защита — это целый комплекс мероприятий, проводимых предприятиями. Пассивные методы защиты предполагают выполнение следующих работ:

  • На стадии монтажа между трубопроводом и грунтом оставляют воздушный зазор, препятствующий попаданию грунтовой воды, в том числе в составе с кислотными и щелочными примесями.
  • Покрытие специализированными составами, назначение которых распространяется от негативных воздействий почвы.
  • Обработка металла химическими составами, с образованием тонкой пленки.

Активные способы защиты предусматривают использование тока и обмен ионов на основе химических реакций, за счет чего обеспечивается:

  • Защита подземных трубопроводов от коррозии созданием электродренажной системы для изоляции трубопроводного транспорта от блуждающих токов.
  • Защита анодом от разрушения металлических поверхностей.
  • Катодная защита для увеличения сопротивления металлических оснований.

Только с учетом всех способов, препятствующих образованию ржавчины на металле, будет увеличен срок службы конструкций. Антикоррозионная защита трубопроводов должна выполняться комплексно.

На видео: защита трубопроводов и кабельных линий от электрической коррозии.

https://youtube.com/watch?v=l_pU59HIdlo

О достоинствах применения протекторов

Защита труб этим способом производится с добавлением компонента — ингибитора. Это материал с отрицательным электрическим зарядом. Под воздействием воздушных масс он растворяется, а конструкция остается целой и не подвергается ржавлению. Протекторная защита от коррозии применяется для продления срока службы строительных конструкций, систем отопления и водоснабжения, а также магистрального и промыслового трубопроводного транспорта.

Применение электрохимической защиты позволяет устранить причины многих видов коррозии. Такая антикоррозийная защита трубопроводов – неплохое решение даже для предприятий, не имеющих финансовых возможностей по обеспечению полноценной защиты от неконтролируемого процесса.

Для обеспечения грамотного подхода следует:

  • Протекторы, изготовленные из алюминия, использовать в средах морских вод и прибрежных шельфах.
  • В средах с небольшой электропроводностью использовать магниевые протекторы. Но, опять же, они не подходят для обработки внутреннего покрытия резервуаров, нефтяных отстойников в связи с тем, что обладают достаточно низкой взрывопожароопасностью.
  • Использовать протекторы для защиты от сред пресной воды.
  • Проекторы, выполненные на основе цинка, являются полностью безопасными, их можно применять на пожаро- и взрывоопасных производствах.

Протекторной антикоррозионной защите можно отнести следующий ряд преимуществ:

  • недостаток денежных средств и производственных мощностей у предприятия не будет препятствием ее выполнению;
  • возможность защиты конструкций небольших размеров;
  • если трубы покрыты теплоизоляционными материалами, то такая защита приемлема.

Используемые материалы и цели применения

Противокоррозионная защита необходима для всех металлических оснований. Данный вид противостояния от ржавчины широко используется для обработки танкеров, так как эти суда наиболее подвержены воздействию воды, имеющей в составе агрессивные компоненты. Даже специальная окраска не справляется с решением этой проблемы.

Наиболее рациональным выбором для покрытия стальных конструкций будет использование протекторов с отрицательным потенциалом. При изготовлении таких устройств применяется магний, цинк или алюминий. Большая разница потенциалов металла и стальных поверхностей способствует увеличению спектра защитного действия, в результате различные виды коррозии устраняются.

Пассивная защита требуется стальным покрытиям и изделиям из металла. Сущность метода заключается в применении гальванических анодов, обеспечивающих противодействие подземных трубопроводов коррозии. При произведении расчета для данной установки, необходимо учитывать следующие показатели:

  • параметры силы тока;
  • сопротивление от перепадов напряжения;
  • характеристики степени защиты, применяемые для 1 км трубопровода;
  • показатель расстояния между элементами защиты.

Протекторная защита трубопроводов от коррозии — принцип действия и схема

Существует две основные группы методик предотвращения разрушения (или снижения его интенсивности) металлов под воздействием внешних факторов (в первую очередь, влаги) – активная и пассивная.

К первой относится защита электрохимическая. С одним из таких способов борьбы с коррозией – протекторным (гальваническим) – читатель сможет ознакомиться в данной статье.

Принцип функционирования

Цель протекторной защиты – максимальное снижение потенциала основного материала, чем и обеспечивается предохранение его от разрушения корозией. Это осуществляется присоединением к нему специального электрода, который нередко именуется «жертвенным анодом».

Он подбирается из металла более активного по отношению к базовому. Таким образом, коррозии в первую очередь подвергается протектор, следовательно, повышается долговечность того или иного конструкционного элемента, с которым он соединяется (читайте о катодной защите).

Эффективность протекторной защиты

Считается очень высокой. При том, что эн/затраты на реализацию протекторной защиты от коррозии сравнительно небольшие. Если использование магниевого анода с соответствующими параметрами предохраняет разрушение металла трубопровода на протяжении, к примеру, порядка 7,5 км, то без него – всего лишь на 25 – 30 м.

Когда следует использовать протекторную защиту

Способов борьбы с коррозией достаточно, и выбор всегда есть. Применение «жертвенного анода» целесообразно:

  • если у предприятия нет необходимых мощностей для реализации иных, более эн/затратных методик;
  • при необходимости защиты малогабаритных конструкций;
  • для предохранения от коррозии металлоизделий (объектов) с поверхностным покрытием (изоляцией). Те же трубопроводные магистрали.

Максимальная эффективность протекторной защиты достигается, если она используется в средах, называемых электролитическими. Например, морская вода.

Какие металлы используются в качестве протекторов

Как правило, в основном подразумевается протекторная защита изделий из железа и его сплавов (стали). По сравнению с ними более активными являются такие металлы, как цинк, хром, алюминий, кадмий, магний. Хотя это и не единственно возможные варианты.

Например, если цинковый электрод поместить в сухой грунт, то эффективность его действия будет практически нулевой. Поэтому выбор того или иного протектора определяется местными условиями.

Пассивные и активные методы защиты

Все основные способы защиты трубопроводов от коррозии сводятся к выполнению целого ряда работ. Если говорить о пассивных методах, они выражаются в следующем:

  • особом способе укладки, когда сопротивляемость к коррозии продумывается еще на стадии монтажа трубопровода. Для этого между землей и трубой оставляется воздушный зазор, благодаря которому внутрь трубопровода не попадут ни грунтовые воды, ни соли, ни щелочи;
  • нанесении специальных покрытий на трубы, которые будут защищать поверхность от почвенных воздействий;
  • обработке специальной химией, например, фосфатами, образующими на поверхности защитную пленку.

Схема защиты на основе активных методов предполагает использование электрического тока и электрохимических реакций ионного обмена:

  • электродренажной защиты для борьбы с блуждающими токами;
  • анодной защиты, которая замедляет процесс разрушения металла;
  • катодной защиты, когда постоянный ток повышает сопротивляемость металлов.

Электродренажная защита

Это способ защиты трубопроводов от разрушения с помощью блуждающих токов. Метод предусматривает их дренаж (отвод) с защищаемой конструкции на источник блуждающих токов или специальное заземление.

  • Дренаж бывает прямым, поляризованным и усиленным. Прямой электрический дренаж — это дренажное устройство, имеющее двустороннюю проводимость. При величине тока, превышающей допустимую величину, выйдет из строя плавкий предохранитель. Электрический ток пойдет по обмотке реле, оно включится, после чего произойдет включение звука или света.
  • Прямой электрический дренаж используют для тех трубопроводов, чей потенциал всегда выше потенциала рельсовой сети, служащей для отвода блуждающих токов. Иначе отвод станет каналом для натекания блуждающих токов на трубопровод.
  • Поляризованный электрический дренаж является дренажным устройством, имеющим одностороннюю проходимость. Отличие поляризованного дренажа от прямого заключается в присутствии у первого элемента односторонней проводимости ВЭ. В случае поляризованного дренажа ток течет только в одном направлении — от трубопровода к рельсу. Это не позволяет блуждающим токам натекать на трубопровод по дренажному проводу.
  • Усиленный дренаж используется тогда, когда требуется не только отвести блуждающие токи с трубопровода, но и создать на нем определенную величину защитного потенциала. Усиленный дренаж – это обычная катодная станция. Ее отрицательный полюс подсоединяют к защищаемой конструкции, а положительный — к рельсам электрифицированного транспорта, а не к анодному заземлению.
  • Как только трубопровод введут в эксплуатацию, регулируют работу системы его защиты от коррозии. Если возникает необходимость, осуществляют подключение станций катодной и дренажной защиты и протекторных установок.

Использование какой-либо из технологий защиты промысловых, стальных и прочих видов трубопроводов от коррозии – обязательная составляющая их эксплуатации. Все методы антикоррозийной защиты требуется реализовывать в строгом соответствии с ГОСТом.

Типы коррозии и описание процесса

  • Химическая — это такой тип взаимного влияния металла с окружающей средой, в процессе действия которого окисление и дальнейшее восстановление части среды проходят в едином акте. Продукты взаимного влияния не имеют разделения в пространстве.
  • Электрохимическая — это такой тип взаимного влияния металла с коррозийным пространством, в котором реакция ионизации коррозионной среды проходит в нескольких актах.
  • Газовая— это коррозия металлических поверхностей при слабом содержании воды (обычно влаги находится не больше 0,2 %) либо при максимальных рабочих температурах. В современной химической и газовой промышленности подобный тип коррозии может встречаться чаще остальных.
  • Атмосферная — это тип коррозии в воздушной атмосфере либо в среде влажного газа.
  • Биокоррозия — это биологический тип коррозии металла, который протекает под воздействием жизнедеятельности микробов и разных микроорганизмов.
  • Контактная — это такой тип коррозии, который провоцируется контактом нескольких типов металлов с различными стационарными потенциалами.
  • Радиационная — это такой тип коррозии металла, который обусловлен влиянием радиоактивного облучения.

Также существует коррозия внешним или блуждающим электрическим током. Еще один тип коррозии — это коррозия под напряжением, которая спровоцирована одномоментным влиянием коррозионной среды и протеканием механического напряжения

Важно учитывать, что данный тип коррозии является очень вредным, в особенности для систем, испытывающих сильные физические нагрузки

Применение жидкой резины для гидроизоляционных работ

Способы защиты металлов от коррозии

Предотвращение начала или активного протекания коррозии – более удачный способ избавиться от проблем с разрушением металлов, чем постоянная замена или восстановление деталей. Поэтому все производители металлических изделий уделяют максимум внимания разработке и совершенствованию способов защиты своей продукции от ржавления.

На данный момент есть четыре основных направления:

  • изменение свойств металла введением добавок. По этому принципу изготавливаются нержавеющие стали – добавки хрома (12%) повышают стойкость сплава к коррозии до почти полной невосприимчивости в нормальных бытовых условиях. Изменения температуры и состава окружающей среды снижают стойкость нержавеющей стали к коррозии;

  • использование защитных покрытий. Применяются различные (в чистом виде и комбинациях) лако-красочные, эмалевые, полимерные составы. Также – и с большим успехом – используется поверхностное нанесение менее активных химически металлов (оцинковывание, хромирование, никелирование, золочение);
  • применение небольших элементов (пластинок, заклепок) из более активных металлов для сохранения основного объема и массы изделия – коррозии в этом случае подвергаются именно добавленные элементы. Отдельно можно выделить создание слабого тока в самом изделии для нейтрализации тока электрохимической коррозии. Применение этого способа ограничено определенными условиями эксплуатации;
  • введение ингибиторов – веществ, угнетающих процесс коррозии – в окружающую изделие среду.

Последний метод требует отдельного рассмотрения.

Протекторная защита от коррозии металлических изделий

Протекторная защита — это один из возможных вариантов защиты конструкционных материалов трубопроводов от коррозии. Применяется, прежде всего, на газопроводах и других магистралях.

Сущность протекторной защиты

Протекторная защита представляет собой использование специального вещества — ингибитора, который является металлом с повышенными электроотрицательными качествами.

Под воздействием воздуха протектор растворяется, в результате чего основной металл сохраняется, несмотря на воздействие коррозийных факторов.

Протекторная защита — одна из разновидностей катодного электрохимического метода.

Данный вариант антикоррозийных покрытий особенно часто применяется, когда предприятие стеснено в своих возможностях по организации катодной защиты от коррозийных процессов электрохимического характера. Например, если финансовые или технологические возможности предприятия не позволяют построить линии электропередач.

Протектор-ингибитор эффективен, когда показатель переходного сопротивления между защищаемым объектом, и средой вокруг него, не является значительной.

Высокая результативность протектора возможна лишь на определенной дистанции. Чтобы выявить это расстояние, применяется определение радиуса антикоррозийного действия применяемого протектора.

Данное понятие показывает максимальное удаление защищающего металла от охраняемой поверхности.

Суть коррозийных процессов сводится к тому, что наименее активный метал в период взаимодействия, привлекает к собственным ионам электроны более активного металла. Таким образом, в одно и то же время осуществляется сразу два процесса:

  • восстановительные процессы в металле с меньшей активностью (в катоде);
  • окислительные процессы металла анода с минимальной активностью, за счет чего и обеспечивается защита трубопровода (или другой стальной конструкции) от коррозии.

Спустя некоторое время эффективность протектора падает (в связи с потерей контакта с защищаемым металлом или же из-за растворения защищающего компонента). По этой причине возникает потребность в замене протектора.

Рациональное конструирование и эксплуатация

Рациональное конструирование и эксплуатация металлических сооружений и деталей (исключение неблагоприятных металлических контактов или их изоляция, устранение щелей и зазоров в конструкции, устранение зон застоя влаги, ударного действия струй и резких изменений скоростей потока в конструкции и др.).

Вопросам проектирования антикоррозионной защиты строительных конструкций уделяют серьезное внимание как у нас в стране, так и за рубежом. Западные фирмы при выборе проектных решений тщательно изучают характер агрессивных воздействий, условия эксплуатации конструкций, моральный срок службы зданий, сооружений и оборудования

При этом широко используются рекомендации фирм, производящих материалы для антикоррозионной защиты и располагающих лабораториями для исследования и обработки защитных систем из выпускаемых ими материалов.

Актуальность решения проблемы противокоррозионной защиты диктуется необходимостью сохранения природных ресурсов, защиты окружающей среды. Эта проблема находит широкое отражение в печати. Издаются научные труды, проспекты, каталоги, устраиваются международные выставки с целью обмена опытом между развитыми странами мира.

Таким образом, необходимость исследования коррозионных процессов является одной из наиболее важных проблем.

Особенности протекторной защиты

Учитывая физико-химические особенности такой защиты металлических сооружений, можно сделать вывод о нецелесообразности применения протектора в случае, если конструкция эксплуатируется в кислых средах. Протекторная защита рекомендована к применению, если сооружение находится в нейтральной среде (грунт, вода, воздух и пр.).

Чтобы защитить железный трубопровод, в качестве протектора имеет смысл использовать кадмий, хром, цинк, магний (более активные металлы). Но и при их использовании существует ряд нюансов.

Например, чистый магний имеет высокую скорость ржавления, чистый цинк из-за крупнозернистой структуры растворяется неравномерно, алюминий быстро покрывается оксидной пленкой. Чтобы предотвратить негативные явления, в чистое вещество, которое будет служить протектором, вводят легирующие составляющие. Фактически протектором выступает не чистый металл, а его сплав с другими веществами.

Магниевая защита

Чаще всего в качестве защиты применяют сплавы магния. Легирующими компонентами состава выступают алюминий (максимум 7 %), цинк (до 5 %), также вводят медь, свинец и никель, но их суммарная доля не превышает сотой части состава. В качестве протектора такие составы могут применяться в средах с показателем кислотности не выше 10,5.

Даже в составе сплава магний быстро растворяется, а потом на его верхнем слое появляются труднорастворимые соединения. Магниевые сплавы имеют существенный недостаток — после нанесения они могут спровоцировать растрескивание металлических изделий, способствовать возникновению повышенной водородной хрупкости.

Цинковая защита

Альтернативой магниевому сплаву для защиты конструкций, расположенных в соленой воде, выступают цинковые составы. Легирующими компонентами для цинка становятся кадмий (максимальный показатель 0,15 %), алюминий (менее 0,5 %) и незначительное количество железа, свинца и меди (суммарно до 0,005 %). От влияния морской воды такой протектор будет идеальным, но в нейтральных средах протекторы из цинкового сплава быстро покроются оксидами и гидроксидами, сведя на нет весь антикоррозийный комплекс.

Цинковые сплавы выступают как протекторы от коррозии, обеспечивая максимальную взрыво- и пожарную безопасность. Этими составами целесообразно обрабатывать трубопроводы для горючих и взрывоопасных веществ, например, газа. Еще один «балл» в свой актив такие составы получают за экологическую безопасность – при анодном растворении не образуется загрязняющих веществ. Поэтому цинковые композиции часто применяются для коррозийной защиты нефтепроводов, а также для транспортирующих нефть танкеров и судов.

От воздействия проточной соленой воды обычно применяют алюминиевые составы. В сплав также вводят цинк (до 8 %), магний (до 5 %) и индий с кремнием , таллием и кадмием с незначительной долей (до 0,02 %). Добавки предупреждают возникновение окислов на алюминии. Также алюминиевые сплавы пригодны в условиях, где используется магниевая защита.

Защитные покрытия, применяемые в быту.

Как уже упоминалось ранее, антикоррозионной защиты требуют и обычные металлические изделия, окружающие нас в повседневном быту. В каждой квартире, а тем более в частном доме, имеется большое количество металлических деталей – балконные ограждения, заборы, решетки, гаражи, садовая техника, радиаторы, трубы холодной и горячей воды, садовые скамейки, которые покрываются со временем ржавчиной.

Доступным способом их защиты является нанесение вручную антикоррозионного покрытия в виде грунтовки или краски по ржавчине. Эти покрытия имеют специальный состав, содержащий ингибиторы и различные добавки, что позволяет наносить их непосредственно на слой ржавчины, предварительно не зачищая металл.

В состав грунтовки, например, входит преобразователь ржавчины и антикоррозионный грунт. Это очень эффективное средство, которое часто используют как самостоятельное покрытие. Такой грунт надежно будет защищать покрытую поверхность от различных атмосферных проявлений (град, снег, дождь, солнце).

Антикоррозионная краска отличается от грунта тем, что в ее состав дополнительно включен такой компонент как износостойкая эмаль, что обеспечивает очень быстрое высыхание краски на воздухе. Ее достоинство в том, что она наносится на любую поверхность (с остатками предыдущей краски, покрытую ржавчиной) из стали, чугуна, железа или железобетона. Нанесение слоя такой краски продлевает, как минимум вдвое, срок службы металлических изделий.

Из всего вышесказанного видно, что существует много различных способов, чем покрыть металл от коррозии. И в зависимости от вида покрываемого металла не составит труда выбрать нужный и эффективный, который защитит металл от ржавчины.

Дополнительная информация: Защита от ржавчины на металле в домашних условиях

Антикоррозийная защита материала в домашних условиях подразумевает применение ЛКМ-покрытий и химических средств. Свойства защитного плана обеспечивают сочетанием разных элементов: смол на основе силикона, ингибиторов, полимеров, металлической стружки и пудры.

Коррозия представляет собой процесс, сопровождающийся разрушением поверхностных слоев конструкций из стали и чугуна, возникающий в результате электрохимического и химического воздействия. Негативным следствием этого становится серьезная порча металла, его разъедание, что не позволяет использовать его по назначению.

В каждом доме, среди домашней утвари, предметов интерьера имеются материалы, инструменты или детали, сделанные из металла. Они практичны, износостойки, но рано или поздно подвергаются коррозии. Как предотвратить этот процесс?

Чем обработать металл, чтобы он не ржавел?

Пленки образуются из лакокрасочных материалов, пластмассы и смолы. Лакокрасочные покрытия недороги и удобны в нанесении. Ими покрывают изделие в несколько слоев.

Термическое воронение стали в домашних условиях? Под краску наносят слой грунта, улучшающего сцепление с поверхностью и позволяющего экономить более дорогую краску. Служат такие покрытия от 5 до 10 лет.

В качестве грунта иногда применяют смесь фосфатов марганца и железа.

Следы легкого окисления, неглубокий налет коррозии, воронение и пр. следы химического окрашивания металла (намеренноно и непреднамеренного) легко и бысто удаляет автополироль. Берите наименее абразивную и не жадничайте – импортную (США, германия и пр.) Небольшой баночки (например, на основе масла Карнаубы) хватит на очень продолжительное время, а если есть машина то остатки тем более не пропадут. (Александр Марьянко)

Коррозионное разрушение – это явление, которое видел каждый. Чем быстро снять краску с дерева в домашних условиях? Образование ржавчины на металлической поверхности лишь один из признаков.

Коррозионный процесс вызывает разъедание материала под воздействием факторов окружающей среды. Как правило, речь идет о влаге. Вода окисляет металл, провоцируя его последующее разрушение.

Не, просто воронение слабо защищает от ржавчины. Консервационная смазка, оружейная – это да.Из практического опыта – у меня воздушка (несмазанная, ну так получилось, вовремя не законсервировал) провалялась в гараже месяца 2 без дела, и за это время вороненый ствол успел покрыться мелкими “цяточками” ржавчины. Так что смазка – обязательно!

Механическое покрытие

Покройте краской изделие и вы убедитесь в действенности этого способа. Окрашивание бывает мокрым и сухим, или порошковым. Эти технологии усовершенствуются. При мокром окрашивании лакокрасочные слои наносят после защиты алюминия составом, содержащим соединения цинка и стронция. Металлическую основу тщательно подготавливают: защищают, шлифуют, сушат. Грунт наносят поэтапно.

Когда растворитель из грунтовочной смеси полностью исчезнет, поверхность можно покрывать изолирующим составом: масляным или глифталиевым лаком.

Статья по теме: Причины электрохимической коррозии и способы защиты металла

Специальные составы помогают остановить коррозию и защищают алюминиевые конструкции от химикатов, бензина, различного вида масел. Выбор покрытия зависит от условий последующей эксплуатации металлического изделия:

  • молотковые – применяют для получения конструкций различных цветовых оттенков, используемых в декоре;
  • бакелитовые – наносят под высоким давлением, заполняя микротрещины и поры.

Порошковое окрашивание требует тщательной очистки поверхности от жира и различных отложений. Это достигается погружением в щелочные или кислотные растворы с добавлением смачивателей. Далее на алюминиевые конструкции наносится слой хроматных, фосфатных, циркониевых или титановых соединений. После этого он не будет окисляться.

После просушки материала на окислившийся участок наносят защитный полимер. Чаще всего используются полиэфиры, стойкие к механическому, химическому и термическому воздействию. Применяют полимеризованный уретан, эпоксидные и акриловые порошки.

Особенности использования антикоррозионного покрытия стальных труб «Уризол»

Одним из самых распространенных материалов в борьбе с ржавчиной трубопроводов является двухкомпонентный материал на основе полимочевины – Уризол. Это вещество активно борется с почвенной и атмосферной коррозией. Кроме общей поверхности конструкции, данным составом просто обрабатывать фитинги, крановые узлы, соединительные детали трубопроводных магистралей.

Первый компонент – Уреапол, который наносится как основа и по сути является смолой, второй компонент — Уреанат, который является активным веществом.

Нанесение Уризола

Как и другие защитные составы, Уризол в несколько слоев для достижения необходимой толщины слоя. Предварительно поверхность должна быть подготовлена: очищена от грязи, наросшей ржавчины, пыли и отслоившейся краски, если такая имеется. Поверхность вымывается чистящими растворами и обезжиривается углеводородными растворителями.

Специалист смешивает необходимые компоненты в специальных пропорциях для качественной работы покрытия. Само нанесение происходит с помощью специальной распылительной установки, когда состав попадает на защищаемую поверхность он находится в жидком состоянии, переходит в гелеобразное и твердеет. После затвердевания, измеряется толщина полученного слоя, если она недостаточна для длительной защиты, процедура повторяется до нарастания необходимого слоя. После достижения технологической толщины составу дается время на окончательную усушку в 24 часа – защита внутренней поверхности стальных труб от коррозии готова.

Преимущества защитного состава Уризол

  • высокий уровень полимеризации без специальных катализаторов;
  • незначительная чувствительность к температурным и влажностным воздействиям;
  • быстрое высыхание слоев, что предотвращает появление подтеков и неровностей;
  • длительный срок службы – при нанесении квалифицированными специалистами достигает 30 и более лет;
  • высокая экологичность и безвредность для человека;
  • низкая пожароопасность, которая обеспечивается отсутствием примесей.

Характеристики Уризола

Характеристика Свойство
Время высыхания, мин ≤ 10
Диэлектрическая сплошность. Отсутствие пробоя при электрическом напряжении, кВ/мм ≥ 5
Прочность при ударе, Дж

— при температуре (20±5)ºС;

— при температуре (40±3)ºС;

— при температуре минус (40±3)ºС

≥ 6

≥ 6

≥ 6

Адгезия к стали методом отрыва (для всех типов покрытий) при температуре (20±5)ºС, МПа ≥7
Относительное удлинение при разрыве при температуре (20±5)ºС, % ≥20
Прочность покрытия на изгиб при температуре испытаний (20±5)ºС Отсутствие трещин и мест отслаивания

Что происходит с металлом в процессе коррозии

Поверхность металлических объектов в химически или электрически активной среде постепенно разрушается, окисляясь и теряя частицы металла. Их замещение на более хрупкие окислы приводит к потере прочности, изменению эксплуатационных характеристик объекта.

Под действием электролитов (конденсат, дождевая вода и снег, морская и речная, озерная вода, растворы щелочей и кислот, жидкости с высоким содержанием солей) на поверхности металла образуются так называемые гальванические элементы. В зависимости от химического потенциала соприкасающихся материалов металл быстрее или медленнее растворяется. Особенно сильно воздействие коррозии на границе двух металлов – например, в местах установки заклепок на металлический лист или по сварочным швам.

При химической коррозии электрических процессов нет, идет прямое окисление металла атмосферным (или находящимся в газовой, жидкой среде) кислородом. Так, например, образуется окалина при нагреве железистых сплавов до высоких температур (например, во время ковки).

На фото слева – часть кованого ножа, еще не очищенного от окалины, справа – уже отшлифованная.

Отдельно стоит рассмотреть процесс так называемой питтинговой коррозии (язвенной). Этот термин связан с англоязычным понятием pitting, от pit — покрывать(ся) ямками, язвами. В процессе такого разрушения на поверхности металла образуются вначале мелкие, точечные ямки и полости, которые затем разрастаются в глубь массива.

Первичные нарушения целостности наблюдаются в тех местах, где на поверхности металлической детали есть микроповреждения – выход на поверхность зерен, микротрещин, пор, различных включений. Очень часто причиной начала язвенной коррозии являются остатки прокатной окалины, не полностью удаленной при механической обработке и/или нанесении защитного слоя.

Характерные типы поражения ржавчиной

Различают следующие характерные виды поражения коррозией:

  • Поверхность покрыта сплошным ржавым слоем или отдельными кусками.
  • На детали возникли небольшие участки ржавчины, проникающей в толщину детали.
  • В виде глубоких трещин.
  • В сплаве окисляется один из компонентов.
  • Глубинное проникновение по всему объему.
  • Комбинированные.

Виды коррозионных разрушений

По причине возникновения разделяют также:

  • Химическую. Химические реакции с активными веществами.
  • Электрохимическую. При контакте с электролитическими растворами возникает электрический ток, под действием которого замещаются электроны металлов, и происходит разрушение кристаллической структуры с образованием ржавчины.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector