Как рассчитать теплопотери частного дома?

Содержание:

Если вам понравилась статья, пожалуйста, поделитесь ей

Уменьшение теплопотерь дома: теплоизоляционные материалы

Решая проблему, как сохранить тепло в доме, очень важно правильно выбрать теплоизоляционные материалы. Термосопротивление самых современных из них намного превосходит этот параметр традиционных утеплителей

Теплоизоляционные материалы должны отвечать целому ряду требований, среди которых:

долговечность (это важно для длительной его эксплуатации);
экологичность (отсутствие вредных для здоровья выделений);
горючесть (отсюда и пожаробезопасность);
повышенная паропроницаемость (благодаря чему из помещения будет выводиться влага и конструкции дома будут оставаться сухими);
небольшой вес (не придется усиливать фундамент, перекрытия, не возникнет проблем с монтажом, транспортировка материала и покупка крепежа обойдутся не слишком дорого
естественно, цена (для многих это главный показатель, определяющий выбор того или иного утеплителя).

Этапы выполнения теплового расчета помещения

Как известно, тепловой расчет отопительных приборов осуществляется в несколько стадий, а именно:

прежде всего следует узнать то, чему равны тепловые потери дома, чтобы правильно определить мощность не только отопительного котла, но и каждого из приборов нагрева, т.е. каждой батареи

Подобные вычисления должны быть произведены для каждого помещения, которое имеет в своей конструкции внешнюю стену.
Важно запомнить, что полученный результат крайне необходимо проверить на предмет правильности тепловой нагрузки на отопление. Так, итоговые цифры следует разделить на параметр площади конкретного помещения, чтобы получить размер удельных тепловых потерь, который измеряется в Вт/м²

Наиболее часто этот показатель составляет 50/150 Вт/м². При условии, если результат расчета количества тепла на отопление здания слишком отличается от данного показателя, то следует все перепроверить и при необходимости заново выполнить вычисления, так как в случае использования неправильных расчетов возникает серьезная угроза нормальному функционированию всей отопительной системы в целом;

после этого следует определиться с рабочей температурой
Правильнее всего будет принять за основу следующие параметры: 75/65/20°C, что равно температурному режиму в котле отопления, в радиаторе и в комнате соответственно;
далее необходимо выполнить расчет тепловой мощности системы отопления, принимая во внимание расчет тепловых потерь здания;
затем требуется произвести расчет гидравлики, так как система теплоснабжения не сможет нормально функционировать без него. Подобные вычисления также необходимы для определения параметров трубы, в частности, их диаметра, а также для изучения технических характеристик насоса циркуляции, входящего в конструкцию системы
При выполнении расчетов в загородном доме частного типа можно воспользоваться специальными материалами и изучить фото различных таблиц, где приведены данные о сечении труб отопления;
продолжаются расчеты выбором отопительного котла и определением его свойств. Так, главное – это решить, какой тип конструкции будет применяться: бытовой или промышленный;
завершается процесс определением объема системы теплоснабжения. Знать этот параметр важно, в первую очередь, для того, чтобы правильно выбрать бак расширения или удостовериться в том, что объема того бака, который вмонтирован в генератор тепла, будет достаточно. Для выполнения любых расчетов всегда можно воспользоваться стандартным бытовым калькулятором, не прибегая к сложным математическим вычислениям (подробнее: «Расчет объема системы отопления, включая радиаторы»).

Мы работаем со следующими брендами:

Влияние воздушной прослойки

В случае, когда в трехслойной кладке в качестве утеплителя применяются минеральная вата, стекловата или другой плитный утеплитель, необходимо устройство воздушной вентилируемой прослойки между наружной кладкой и утеплителем. Толщина этой прослойки должна составлять не менее 10 мм, а желательно 20-40 мм. Она необходима для того, чтобы осушать утеплитель, который намокает от конденсата.

Данная воздушная прослойка является не замкнутым пространством, поэтому в случае ее наличия в расчете необходимо учитывать требования п.9.1.2 СП 23-101-2004, а именно:

а) слои конструкции, расположенные между воздушной прослойкой и наружной поверхностью (в нашем случае — это декоративный кирпич (бессер)), в теплотехническом расчете не учитываются;

б) на поверхности конструкции, обращенной в сторону вентилируемой наружным воздухом прослойки, следует принимать коэффициент теплоотдачи αext = 10,8 Вт/(м°С).

Автодом Monaco Coach Dynasty

Расчет тепловых потерь частного дома

Достаточно часто происходит так, что, еще до того как вы поселитесь в новом доме, в нем остается всего-навсего доработать какие-то мелочи своими собственными руками или же, наоборот, приходится обращаться за помощью профессионалов, для того чтобы сделать то, что вы оставили на последнюю очередь. И в первом, и во втором случае проблему необходимо решить как можно скорее, но разница заключается в том, что, до того как приступить к реализации какой-то серьезной задачи, нередко требуется провести мероприятия подготовительного характера. Так, например, если у вас еще не проведено отопление, то сначала нужно будет провести расчет тепловых потерь и только потом определяться с тем, какая отопительная система будет подходящей в вашем конкретном случае.

Для того чтобы осуществить намеченное мероприятие, необходимо определиться с тем, через что именно в частном доме может выходить тепло. Самый первый ответ, который приходит на ум, связан, конечно же, с дверью. Еще бы, ведь именно она является той частью, которая не только стоит на границе улицы и дома, но и находится в открытом состоянии очень часто. И если в весенний или летний период данное ее положение становится всего-навсего причиной проникновения в дом комаров, мух и каких-то других мелких (порой и крупных) насекомых, то осенью, зимой и ранней весной результаты данных действий намного серьезнее: за несколько секунд выхолаживается одна комната, а если учесть, что в дом не только приходят, но из него еще и выходят, то, как минимум, раз в день дверь открывается на 2-3 минуты. И если в квартирах более быстрому остыванию внутренней температуры помещения препятствует подъезд, то в частном доме такой защиты нет.

Итак, с дверью разобрались, здесь ничего нового мы не узнали, а лишь подтвердили лишний раз правоту своих догадок и подозрений. Далее представляем список частей здания, виновных в тепловых потерях:

  • стены;
  • окна;
  • потолок;
  • чердачное покрытие или крыша;
  • пол на первом или на цокольном этаже;
  • вентиляционная система.

3 Теплопотери на нагревание инфильтрующегося наружного воздуха через наружные двери и на нагревание въезжающего транспорта

Расчетная разность давления воздуха ∆pi, Па, на наружную и внутреннюю поверхность ограждений определяется для каждого помещения по формуле:

∆pi=(H – hi)*(γн –- γв)+0,5ν2*ρн*(Сн – Сп)*кν – pint(3.4)

hi — расчетная высота от уровня земли до верха окон, балконных дверей, м;

γн, γв — удельный вес, Н/м3, соответственно при температуре наружного (tнБ ) и внутреннего (tв) воздуха, определяемый по формуле:

(3.5)

ρн— плотность наружного воздуха, кг/м3,

Сн, Сп — аэродинамические коэффициенты для наветренной и подветренной поверхностей ограждений, равные Сн=0,8, Сп= — 0,6;

кν— коэффициент учета изменения скоростного давления ветра в зависимости от высоты здания;

pint — условно постоянное давление воздуха, Па, в помещении зда­ния (для жилых зданий).

∆p = 0,55*Н*(γ– γв)+0,03*γн*ν2, (3.6)

Сопротивление воздухопроницанию окон и балконных дверей жилых зданий Rи должно быть не менее требуемого сопротивления воздухопроницанию Rитр, м2·ч/кг, определяемого по формуле

(3.7)

Расход инфильтрующегося в помещении воздуха ∑Gи, кг/ч, определяется по формуле:

∑Gи = 0,216, (3.8)

где ∆pi – разность давлений воздуха на наружной и внутренней поверхности наружных ограждений помещения на расчетном этаже, Па;

Расход теплоты на нагрев инфильтрующегося воздуха через ограждение Qи, Вт :

Qи = 0,28∑Gи c(tв-tнБ), (3.9)

kн – коэффициент учета влияния встречного теплового потока в конструкции.

Согласно , В помещении автостоянки необходимо учесть потребность в тепле на обогрев въезжающего в помещение подвижного состава Qавт, Вт, в количестве 0,029 Вт в час на один кг массы в снаряженном состоянии на один градус разницы температур наружного и внутреннего воздуха:

= 0,029 ∙ Мавт ∙ (tн – tв), (3.10)

где Мавт – масса одного автомобиля;

tв, tн – соответственно температуры внутреннего и наружного воздуха, °С;

Общее количество теплопотерь на нагрев въезжающего транспорта Qавт, Вт, составит:

Qавт = ∙n, (3.11)

Вт.

№ помещения

Сопротивление воздухопроницанию ОК Rи,(м2*ч)/КГ

воздуха yн, Н/м3

Удельный вес внутреннего воздуха yв, Н/м3

Расчетная высота hi, м

Расход инфильтрующегося воздуха Gи, кг/ч

Qи, Вт

1

2

3

4

5

6

7

8

9

10

11

12

13

ДД

ЛК№1,

3,08

7

0,214

7,2

14,49

11,98

18,28

2,5

18,41

21,89

250

ДД

ЛК№2,

3,08

7

0,214

7,2

14,49

11,98

18,28

2,5

18,41

21,89

250

Qавт = 1470,3 ∙ 8 = 11762,4 Вт.

Определение суммарных теплопотерь здания заключается в расчете Qр для каждого помещения где устанавливается отопительный прибор и суммировании их всех по всему зданию.

Qр=∑Q(1+∑ß)+ Qи. (3.12)

Qдоб= 151,56 ∙ 1,05 = 159,13 Вт.

Qдоб= 238,32 ∙ 1,05 = 250,23 Вт

Qр=159,56 + 250,32 = 410 Вт.

Тепловые потери за счет крыши или потолка

Потери тепла для потолка и крыши рассчитываются по той же формуле, что и для стен. Теплый воздух поднимается вверх, поэтому, чтобы не отапливать улицу, следует серьезно отнестись к утеплению крыши при строительстве. Основным параметром теплопотерь здесь будет неравномерность стыков. От выбора утепляющего материала тоже будет завесить очень многое. Так, например использование эковаты предполагает отсутствие влаги. А, как известно, вместе с теплым воздухом вверх поднимается и пар, который остывая, будет конденсироваться, оседать на утеплителе, замещая воздух и снижать термическое сопротивление утеплителя.

Подсчет вручную

Исходные данные. Одноэтажный дом площадью 8х10 м, высотой 2,5 м. Стены толщиной 38 см сложены из керамического кирпича, изнутри отделаны слоем штукатурки (толщина 20 мм). Пол изготовлен из 30-миллиметровой обрезной доски, утеплен минватой (50 мм), обшит листами ДСП (8 мм). Здание имеет подвал, температура в котором зимой составляет 8°C. Потолок перекрыт деревянными щитами, утеплен минватой (толщина 150 мм). Дом имеет 4 окна 1,2х1 м, входную дубовую дверь 0,9х2х0,05 м.

Задание: определить общие теплопотери дома из расчета, что он находится в Московской области. Средняя разность температур в отопительный сезон – 46°C (как было сказано ранее). Помещение и подвал имеют разницу по температуре: 20 – 8 = 12°C.

1. Теплопотери через наружные стены.

Общая площадь (за вычетом окон и дверей): S = (8+10)*2*2,5 – 4*1,2*1 – 0,9*2 = 83,4 м2.

Определяется теплосопротивление кирпичной кладки и штукатурного слоя:

  • R клад. = 0,38/0,52 = 0,73 м2*°C/Вт.
  • R штук. = 0,02/0,35 = 0,06 м2*°C/Вт.
  • R общее = 0,73 + 0,06 = 0,79 м2*°C/Вт.
  • Теплопотери сквозь стены: Q ст = 83,4 * 46/0,79 = 4856,20 Вт.

Меры по сокращению потерь теплоты с поверхности трубопроводов

Энергосбережение при транспортировке тепловой энергии в первую очередь зависит от качества тепловой изоляции. Главными энергосберегающими мероприятиями, уменьшающими потери теплоты с поверхности трубопроводов, являются:

изоляция неизолированных участков и восстановление целостности существующей теплоизоляции;

восстановление целостности существующей гидроизоляции;

нанесение покрытий, состоящих из новых теплоизоляционных материалов, либо использование трубопроводов с новыми типами теплоизоляционных покрытий;

изоляция фланцев и запорной арматуры.

Изоляция неизолированных участков является первоочередным энергосберегающим мероприятием, поскольку тепловые потери с поверхности неизолированных трубопроводов очень велики по сравнению с потерями с поверхности изолированных трубопроводов, а стоимость работ по нанесению теплоизоляции относительно невелика.

Новые виды теплоизоляционных покрытий должны иметь не только низкую теплопроводность, но и малую воздухо- и водопроницаемость, а также низкую электропроводность, что уменьшает электрохимическую коррозию материала труб.

При нарушении целостности слоя гидроизоляционных покрытий происходит увеличение влажности теплоизоляции. Поскольку теплопроводность воды в диапазоне температур работы тепловой сети X = 0,6 -ь 0,7 Вт/(м • К), а теплопроводность теплоизоляционных материалов обычно составляет А,из = 0,035 -4-0,05 Вт/(м • К), то увлажнение материала может увеличить его теплопроводность в несколько раз (на практике более чем в 3 раза).

Увлажнение теплоизоляции способствует разрушению труб из-за коррозии их внешней поверхности, в результате чего срок службы трубопроводов сокращается в несколько раз. Поэтому на металлическую поверхность трубы наносится антикоррозионное покрытие, например, в виде силикатных эмалей, изола и др.

В настоящее время широко внедряются теплопроводы типа «труба в трубе» с пенополиуретановой изоляцией в гидрозащитной оболочке с дистанционным контролем целостности изоляции. Такая конструкция предусматривает предварительную изоляцию пенополиуретаном и заключение в полиэтилен не только труб, но и всех компонентов системы (шаровой арматуры, температурных компенсаторов и др.). Теплопроводы этой конструкции прокладываются под землей бесканально и обеспечивают существенное энергосбережение за счет предварительного изготовления отдельных изолированных элементов в заводских условиях и высокой тепло- и влаго- непроницаемости. Для успешной эксплуатации предварительно изолированных трубопроводов необходимо высокое качество их монтажа. При этом они могут функционировать без замены до 30 лет.

Профилактическими мерами, позволяющими сокращать потери теплоты с поверхности трубопроводов, являются: предотвращение затопления трубопроводов в результате установки дренажей (при их отсутствии) и содержания их в должном порядке; вентиляция проходных и непроходных каналов для предупреждения попадания конденсата на поверхность теплоизоляции.

В качестве еще одной меры, снижающей потери теплоты с поверхности трубопроводов, служит переход системы теплоснабжения на пониженный температурный график (с 150/70 на 115/70 или 95/70 °С/°С), что приводит к снижению разности температур теплоносителя в подающем трубопроводе и окружающей среды. Однако э го потребует большего расхода теплоносителя через систему, чтобы передать потребителю требуемое количество теплоты. Для этого нужно увеличить затраты электроэнергии на привод насосов. Поэтому для определения целесообразности проведения рассматриваемого мероприятия необходим технико-экономический расчет.

Красивые примеры

Простые способы, требующие минимальных затрат

Рассмотрим самые простые способы уменьшения утечет тепла в помещении. Они, как можно догадаться из названия, больших затрат не потребуют.

Установить фольгированный (теплоотражающий) экран около батареи. Благодаря этому тепловая энергия будет отражаться и направляться в помещение, а не расходоваться на обогрев стены.

Отражающий экран за батареей

Закрывайте двери/окна. Самым простом способом экономить тепло является банальное плотное закрывание дверей и окон.

Закрывайте окна и двери

Утепление дверей/окон. Если окна деревянные, то нужно герметизировать участки, в которых стекло прилегает к раме. Чтобы сократить теплопотери, достаточно просто оклеить щели или установить уплотнители.

Уплотнение окон

Устранить затенение окон. Через окно проходит до 95 процентов солнечного света, а потому тепло будет аккумулироваться внутри помещения. Подтверждением этому является тот факт, что очень многие теплицы делают именно из стекла.

Окна не должны быть затененыСтекло и зеркальная пленка

Проветривать правильно. Чтобы поддерживать нормальный микроклимат в помещении, требуется регулярное проветривание. Ради экономии же можно проветривать несколько раз в день по 15 минут, а не 1 раз в течение часа.

Проветривание комнаты

Использовать светодиодные или энергосберегающие лампы вместо ламп накаливания. Дело в том, что их дороговизна не компенсируется тепловым излучением в 85 БТЕ/ч.

Энергосберегающая лампочка

Утеплить трубы. В случае если прибор отопления располагается вне дома, желательно качественно утеплить трубы (относится к частным домам).

Трубы желательно утеплить

Герметизировать щели в стене полиуретановым герметиком. Подобного рода герметики «гибкие», они в зависимости от температуры играют, устойчивы к низким температурам, могут глубоко проникать в щели и со временем не отслаиваются.

Заделайте щели герметиком

Виды копчения

Факторы, влияющие на теплопотери

Тепловые процессы хорошо коррелируют с электротехническими: в роли напряжения выступает разница температур, тепловой поток можно рассматривать как силу тока, ну а для сопротивления даже своего термина придумывать не нужно. Также в полной степени справедливо и понятие наименьшего сопротивления, фигурирующего в теплотехнике как мостики холода.

Если рассматривать произвольный материал в разрезе, достаточно легко установить путь теплового потока как на микро-, так и на макроуровне. В качестве первой модели примем бетонную стену, в которой по технологической необходимости выполнены сквозные крепления стальными стержнями произвольного сечения. Сталь проводит тепло несколько лучше бетона, поэтому мы можем выделить три основных тепловых потока:

  • через толщу бетона
  • через стальные стержни
  • от стальных стержней к бетону


Теплопотери через мостики холода в бетоне

Модель последнего теплового потока наиболее занимательна. Поскольку стальной стержень прогревается быстрее, то ближе к наружной части стены будет наблюдаться разница температур двух материалов. Таким образом, сталь не только «перекачивает» тепло наружу сама по себе, она также увеличивает тепловую проводимость прилегающих к ней масс бетона.

В пористых средах тепловые процессы протекают похожим образом. Практически все строительные материалы состоят из разветвлённой паутины твёрдого вещества, пространство между которым заполнено воздухом. Таким образом, основным проводником тепла служит твёрдый, плотный материал, но за счёт сложной структуры путь, по которому распространяется теплота, оказывается больше поперечного сечения. Таким образом, второй фактор, определяющий термическое сопротивление, это неоднородность каждого слоя и ограждающей конструкции в целом.


Уменьшение теплопотерь и смещение точки росы в утеплитель  при наружном утеплении стены

Третьим фактором, влияющим на теплопроводность, мы можем назвать накопление влаги в порах. Вода имеет термическое сопротивление в 20–25 раз ниже, чем у воздуха, таким образом, если она наполняет поры, в целом теплопроводность материала становится даже выше, чем если бы пор вообще не было. При замерзании воды ситуация становится ещё хуже: теплопроводность может возрасти до 80 раз. Источником влаги, как правило, служит комнатный воздух и атмосферные осадки. Соответственно, три основных метода борьбы с таким явлением — это наружная гидроизоляция стен, использование парозащиты и расчёт влагонакопления, который обязательно производится параллельно прогнозированию теплопотерь.

Расчёт потерь тепла с трубопроводов

Расчёт потерь тепла с трубопроводов тепловых сетей выполнен на основе методики приведенной в СНиП 2.04.14 Тепловая изоляция оборудования и трубопроводов.

Методика расчёта тепловых потерь пригодна для всех трубопроводов, на которые распространяется действие данных норм, за исключением систем с отрицательной температурой рабочей среды.

Расчёт величины тепловых потерь выполнен по нормативной плотности теплового потока через изолированную поверхность трубопровода. В методике использованы табличные данные удельных тепловых потерь с одного метра трубы, приведенные в СНиП. Потери тепла для диаметров труб и температур теплоносителя, не приведенных в таблицах — определены методами интерполяции и экстраполяции.

Расчётные потери тепла трубопроводами тепловой сети определяется по формуле:

q – удельная нормативная величина тепловых потерь с одного метра трубы, Вт/м, при средней температуре теплоносителя и заданном количестве часов работы в год, определяется для каждого из диаметров по табличным данным СНиП 2.04.14;

k – коэффициент, учитывающий дополнительные потери тепла с опор трубопровода и арматуры, принимается по табличным данным;

b – коэффициент, учитывающий изменение плотности теплового потока через теплоизоляционный слой из пенополиуретана (ППУ), определяется по СНиП 2.04.14;

l – длина участка трубопровода, м.

Температуру теплоносителя для расчёта потерь тепла в тепловых сетях следует принимать:

  • среднюю температуру теплоносителя за год — для непрерывно работающих сетей;
  • среднюю температуру теплоносителя за период со среднесуточной температурой наружного воздуха ниже 8°С — для тепловых сетей работающих только в отопительный период.

Расчётные температуры в двухтрубных водяных тепловых сетях при качественном регулировании в зависимости от температурного графика отпуска тепла применяют:

25 нетривиальных советов, которые сделают вашу жизнь проще

Пример расчета теплопотерь жилого дома

Рассмотрим стандартный алгоритм для варианта с общим контуром. Ниже последовательно приведены главные особенности основных этапов.

Тепловые потери на вентиляцию

Берут совокупный свободный объем, вычисляют массу воздуха. С учетом нормированной кратности обмена за 24 часа и удельной теплоемкости определяют количество потерянного тепла. Полученное значение из джоулей переводят для удобства в киловатт-часы.

Теплопотери через стены

Уточняют послойно толщину и состав стен. Далее пользуются приведенными выше формулами для получения общей теплопроводности. Поправочный коэффициент разницы температур берут в справочнике для конкретного региона. Как отмечено выше, следует сделать расчет точки росы.

Теплопотери через окна

В этом блоке вычислений следует учесть:

  • количество камер стеклопакета (в рамах);
  • тип заполнения пленочных покрытий;
  • особенности конструкции оконных проемов.

Теплопотери через потолок

Для каждого варианта существует отдельный порядок расчета:

  • комнаты верхнего этажа находятся под «холодным» чердаком;
  • мансарда отапливается в нормальном режиме;
  • промежуток между перекрытием и кровельным покрытием активно вентилируется.

Как и в случае со стенами, суммируют параметры каждого слоя.

Теплопотери через пол

Здесь также имеют значение особенности архитектурных решений:

  • режим и наличие отопления в подвале;
  • применение вентиляции;
  • непосредственный контакт пола с грунтом или наличие изоляционного слоя.

Теплопотери на инфильтрацию

Этим термином обозначают произвольное проникновение наружного воздуха в комнаты через строительные конструкции. Если для расчета теплопотерь дома применить известный калькулятор онлайн Valtec, с поправкой на инфильтрацию потери будут увеличены на 60-70%. Реальная ситуация существенно отличается от подобного расчета. Деревянные стены старого дома обеспечивают хорошую естественную вентиляцию. Здание из монолитного бетона с многокамерными оконными блоками обеспечивает идеальную герметичность. В современных зданиях приходится решать вопросы принудительной вентиляции для создания внутри здоровых условий.

Таблицы для расчета тепловых потерь дома

Таблица «К — коэффициент теплопередачи»:

Конструкция

Толщина конструкции, мм

К, Вт/ (м2 х °С)

Кирпичная стена (на холодном растворе с внутренней штукатуркой) толщиной в 1,5 кирпича 395 1,5
в 2 кирпича 525 1,24
в 2,5 кирпича 655 1,04
Рубленые деревянные стены из бревен диаметром, мм 200 160 1,02
240 200 0,85
Брусчатые деревянные стены 150 1,0
200 0,76
Чердачное деревянное перекрытие 100 1,0
Двойные окна 2,68
Двойные двери 2,33

Таблица « n — коэффициент уменьшения»:

Наименование ограждения

Полы на грунте и лагах 1,0
Чердачные перекрытия при стальной, черепичной или асбестоцементной кровлях при разреженной обрешетке и бесчердачные покрытия с венти­лируемыми продухами 0,9
То же для перекрытий по сплошному настилу 0,8
Чердачные перекрытия при кровлях из рулонных материалов 0,75
Ограждения, отделяющие отапливаемые помещения от неотапливаемых, сообщающиеся с наружным воздухом 0,7
Ограждения, отделяющие отапливаемые помещения от неотапливаемых, не сообщающиеся с наружным воздухом 0,4
Перекрытия над подпольями, расположенными ниже уровня земли 0,4
Перекрытия над подпольями, расположенными выше уровня земли 0,75
Перекрытия над неотапливаемыми подвалами, расположенными ниже уровня грунта или выступающие на высоту до 1 м 0,6

Таблица « Значения R0 и 1/R0»:

Конструкция

Толщина

R0, ккал/(м2 х ч х °С)

1/R0, ккал/ (м2 х ч х °С)

в кирпичах

Стены
Сплошная кладка из обыкновенного кир­пича 0,5 135 0,38 2,64
1 265 0,57 1,76
1,5 395 0,76 1,32
2 525 0,94 1,06
2,5 655 1,13 0,89
Сплошная кладка из обыкновенного кирпича с воздушной прослойкой (= 50 мм) в перевязку через каж­дые 6 рядов 1,5 435 0,9 1,11
2 565 1,09 0,92
2,5 695 1,28 0,78
Сплошная кладка из дырчатого кирпича 1,5 395 0,89 1,12
2 525 1,2 0,89
2,5 655 1,4 0,71
Кирпичная кладка с термоизоляционной засыпкой 1,5 395 1,03 0,97
2 525 1,49 0,67
Деревянные рубленые 200 1,33 0,75
220 1,45 0,68
240 1,56 0,64
Брусчатые 150 1,18 0,85
180 1,28 0,78
200 1,32 0,76
Чердачные перекрытия
Железо-бетонные из сборных ребристых плит с утеплителем 100 0,69 1,45
150 0,89 1,12
200 1,09 0,92
250 1,29 0,77

Перед тем как рассчитать теплопотери дома, помните, что добавочные потери тепла зависят от расположения здания на местности, от ориентации стен по сторонам света, скорости ветра и инфильтрации. Если конструктивные элементы дома обращены на север, восток, северо-восток и северо-запад, дополнительные потери составят 10 %, а если на запад или на юго-восток — 5 %. Расход тепла для нагрева воздуха в помещении можно найти по формуле: Q = F(пл.) х (tв — tн).

В ней используются величины:

  • F — площадь пола помещения (в м2);
  • tв- tн — внутренняя и наружная температура.

Помимо вышеизложенных вычислений, следует уменьшить теплопотери на величину бытовых тепловыделений. Бытовые тепловыделения определяются из расчета 21 Вт на 1 м2 площади пола.

В итоге для определения теплопроизводительности системы отопления следует: вычислить основные и дополнительные теплопотери, суммировать их и вычесть величину, которая характеризует бытовые тепловыделения.

Периодичность капитального ремонта жилых домов

Периодичность капитального ремонта жилых домов зависит, прежде всего, от материала из которого выполнены стены, несущие конструкции, фундамент. У различных материалов отличаться будет и периодичность проведения осмотра, текущих, капитальных работ в частных сооружениях.

Государственными стандартами предусмотрены несколько групп частных зданий, в соответствии с материалами, из которых они возведены. Существует шесть групп частных сооружений, различающихся сроком службы, и для каждой из них предусмотрен свой срок проведения осмотров, ремонта:

  1. Здания из камня, с каменными же или кирпичными стенами, перекрытиями, железобетонными конструкциями – капитальные процедуры раз в 30 лет.
  2. Аналогичные вышеперечисленным материалы с более тонкими стенами (2 – 2,5 кирпича) меньшей капитальности – раз в 30 лет.
  3. Каменные стены, возможно с применением ракушечника, шлакоблока, облегченные конструкции – ремонт раз в 24 года.
  4. Частные дома из дерева и бруса, с деревянными перекрытиями, ленточным фундаментом – ремонт раз в 18 лет.
  5. Сборные конструкции частных зданий – каркасные, щитовые, с применением глины, дерева – раз в 6 лет.
  6. Облегченные каркасные конструкции – раз в 6 лет.

К тому же, капитальные работы могут проводиться при необходимости, если частное сооружение находится в очевидно неудовлетворительном состоянии. Тогда приглашается экспертная комиссия для осмотра. По его итогам выносится заключение о необходимости проведения капитальных действий. Результаты осмотра оформляются специальным документом – дефектным актом. В нем описываются все подлежащие устранению и исправлению моменты.

Особенности

Клей «Момент Кристалл» универсальный является прозрачным и водостойким составом, при помощи которого можно выполнить надежное и долговечное соединения материалов различного происхождения.

Он прекрасно склеивает деревянные, металлические, резиновые, фарфоровые и другие виды поверхностей, обеспечивая месту их стыка невероятную прочность. Также этот клей применим к различным видам ткани, так как он совершенно не оставляет следов, пятен или иных дефектов на обработанных им поверхностях.

Современные производители выпускают клей «Момент Кристалл» в металлической тубе, объем которой равен 30 мл и 125 мл.

клей Момент Кристалл

Клей Кристалл прозрачный и демонстрирует высокую стойкость к воздействию повышенной влажности и не меняет своих параметров при небольших перепадах температуры окружающей среды, что обеспечивает составу «Момент Кристалл» огромную популярность на отечественном рынке. Это подтверждается многочисленными отзывами положительного характера от опытных строителей и тех покупателей, которые предпочитают выполнять строительные и ремонтные работы своими силами.

Это интересно: Клей Unis 2000 — свойства, расход и применение

Методика расчета

Для проведения расчета или перерасчета тепловой нагрузки на отопление зданий, уже эксплуатируемых или вновь подключаемых к системе отопления проводят следующие работы:

  1. Сбор исходных данные об объекте.
  2. Проведение энергетического обследования здания.
  3. На основании полученной после обследования информации производится расчет тепловой нагрузки на отопление, ГВС и вентиляцию.
  4. Составление технического отчета.
  5. Согласование отчета в организации, предоставляющей теплоэнергию.
  6. Заключение нового договора или изменение условий старого.

Сбор исходный данных об объекте тепловой нагрузки

Какие данные необходимо собрать или получить:

  1. Договор (его копия) на теплоснабжение со всеми приложениями.
  2. Справка оформленная на фирменном бланке о фактической численности сотрудников (в случае производственного зданий) или жителей (в случае жилого дома).
  3. План БТИ (копия).
  4. Данные по системе отопления: однотрубная или двухтрубная.
  5. Верхний или нижний розлив теплоносителя.

Все эти данные обязательны, т.к. на их основе будет производиться расчет тепловой нагрузки, так же вся информация попадет в итоговый отчет. Исходные данные, кроме того, помогут определиться со сроками и объемами работа. Стоимость же расчета всегда индивидуальна и может зависеть от таких факторов как:

  • площадь отапливаемых помещений;
  • тип системы отопления;
  • наличия горячего водоснабжения и вентиляции.

Энергетическое обследование здания

Энергоаудит подразумевает выезд специалистов непосредственно на объект. Это необходимо для того, чтобы провести полный осмотр системы отопления, проверить качество ее изоляции. Так же во время выезда собираются недостающие данные об объекте, которые невозможно получить кроме как по средствам визуального осмотра. Определяются типы используемых радиаторов отопления, их месторасположение и количество. Рисуется схема и прикладываются фотографии. Обязательно осматриваются подводящие трубы, измеряется их диаметр, определяется материал, из которого они изготовлены, как эти трубы подведены, где расположены стояки и т.п.

В результат такого энергетического обследования (энергоаудита) заказчик получит на руки подробный технический отчет и на основании этого отчета уже и будет проихводиться расчет тепловых нагрузок на отопление здания.

Технический отчет

Технический отчет по расчету тепловой нагрузки должен состоять из следующих разделов:

  1. Исходные данные об объекте.
  2. Схема расположения радиаторов отопления.
  3. Точки вывода ГВС.
  4. Сам расчет.
  5. Заключение по результатам энергоаудита, которое должно включать сравнительную таблицу максимальных текущих тепловых нагрузок и договорных.
  6. Приложения.
    1. Свидетельство членства в СРО энергоаудитора.
    2. Поэтажный план здания.
    3. Экспликация.
    4. Все приложения к договору по энергоснабжению.

После составления, технический отчет обязательно должен быть согласован с теплоснабжающей организацией, после чего вносятся изменения в текущий договор или заключается новый.

Тепловое излучение и выбор стекла

Не менее 65% теплопотерь через стекло происходят за счет теплового (инфракрасного) излучения. Правильно подобранный вид стекол для пакета поможет снизить цифру теплопотерь. Наиболее действенно – использование энергосберегающих стекол. Благодаря покрытию оксидами металлов отражают большую часть инфракрасного потока.

Увеличение толщины стекол в пакете не приносит пользы, растет вес окна, стоимость. Использование энергосберегающего материала, профиля для окна позволяет экономить до 30% расходов на отопление. Минус — высокая цена, но быстро окупится, если рассчитать.

Энергосберегающие окна

Большие теплопотери дома? Как их снизить?

Зачастую владельцам частного жилья приходится сталкиваться с проблемой повышенных теплопотерь. Несмотря на то, что все расчеты были произведены соответственно нормативной документации, тепла коттеджа всегда не хватает. Это может быть связано с огрехами, допущенными при строительстве дома, установке стеклопакетов, системы кондиционирования, утепления стен.

Чаще всего причиной утечки тепла коттеджа может стать:

  • поврежденный во время монтажа или неправильно закрепленный утеплитель;
  • неэффективная работа радиаторов (радиаторы слишком близко расположены к стене, нагревают ограждающую перегородку);
  • проникновение холода через монтажные отверстия кондиционера или люки;
  • некачественно заделанные кладочные швы;
  • близкая укладка теплых полов к стене;
  • некачественный монтаж стеклопакетов.

Выявить подобные дефекты можно посредством термограммы. Термограмма показывает, какие участки ограждающей перегородки нагреваются сильнее, соответственно отдают больше тепла в окружающую среду.

Чтобы избежать подобных проблем, важно позаботиться о качестве монтажных работ, утепления коттеджа этапа строительства дома. Выбор материалов утепления, стеклопакетов, систем кондиционирования, радиаторов, систем теплых полов также определяет дальнейший уровень теплопотерь

Экономия строительных материалов может впоследствии стать причиной переплат на энергоресурсы.

Сокращению теплопотерь может способствовать правильно составленный архитектурный проект дома. Считается, что отапливать одноэтажный дом простой геометрии, ограниченным количеством углов — экономичнее. Также способствует экономии наличие рольставней окон, остекление южной стороны.

Читайте так же:

Выводы и полезное видео по теме

Выполнение теплотехнического расчета при помощи онлайн-калькулятора:

Правильный теплотехнический расчет:

Грамотный теплотехнический расчет позволит оценить результативность утепления наружных элементов дома, определить мощность необходимого отопительного оборудования.

Как результат, можно сэкономить при покупке материалов и нагревательных приборов. Лучше заранее знать, справиться ли техника с нагревом и кондиционированием строения, чем покупать все наугад.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, размещайте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как теплотехнический расчет помог вам выбрать обогревательное оборудование нужной мощности или систему утепления. Не исключено, что ваша информация пригодится посетителям сайта.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector