Как убрать ржавчину с кузова автомобиля?

Разновидности коррозии

Перед тем как защитить металл от ржавчины, следует узнать о существующих видах. Способ обеспечения антикоррозийной защиты находится в прямой зависимости от условий применения деталей. Потому принято выделять следующие типы:

  • коррозия, которая связана с явлениями атмосферного характера;
  • разрушение структуры металла в воде из-за наличия в ней солей и бактерий;
  • деструктивные процессы, происходящие в грунте (почвенная коррозия).

Способы антикоррозионной защиты при этом должны подбираться в индивидуальном порядке, руководствуясь тем, в каких условиях будет эксплуатироваться изделие из металла.

Что касается типов поражения конструкций, то они могут быть следующими:

  • ржавчина находится на всей поверхности изделия отдельными участками или сплошным покрытием;
  • имеет вид пятен и проникает вглубь элемента;
  • разрушает молекулы металла, приводя к трещинам;
  • масштабное ржавление, при котором разрушается не только поверхность, но и более глубокие слои.

Типы разрушения бывают и комбинированными. В некоторых ситуациях их очень сложно определить на глаз, особенно при точечном ржавлении.

Принято выделять химическую коррозию. При контакте с нефтяными продуктами, спиртами и иными агрессивными веществам происходит особая реакция, которая сопровождается высокой температурой и выделениями газа.

При электрохимической коррозии поверхность металлического сплава соприкасается с водой (электролитом). При этом осуществляется диффузия материала. Электролит обуславливает появление электротока, а электроны металла замещаются и приходят в движение, в результате чего возникает ржавчина.

Обеспечение защиты от коррозии и выплавка стальных изделий — две взаимосвязанные вещи. Коррозия причиняет существенный ущерб постройкам хозяйственного или промышленного назначения. Кроме того, этот процесс может привести к катастрофе, если говорить, например, об опорах электропередач, мостах, заграждениях и т. д.

ФИЗИЧЕСКИЕ МЕТОДЫ: ПРИМЕНЕНИЕ КОРРОЗИОННО-СТОЙКИХ МАТЕРИАЛОВ

Коррозионностойкие материалы включают в себя низкои среднелегированные стали, а также сплавы. При использовании низколегированных сталей рекомендуется дополнительно применять ингибитор коррозии (см. «Классификация коррозионностойких материалов»).

Например, компания REDA (Schlumberger) изготавливает ЭЦН со ступенями из материала «Нирезист-4» (30% Ni, 5% Cr, 5,5% Si, 1,0% Mn, 2,6% C) и 5530 (30,5% Ni, 5,3% Cr, 5,1% Si, 2,7% C, а также Mo, V, Mn). Преимущества рабочих органов, изготовленных из этих материалов, — стойкость к агрессивным средам, высокая износостойкость и снижение отложения солей. Вместе с тем применение «Нирезиста-4» и 5530 заметно удорожает оборудование.

ЭЦН из полимерных материалов компании «Ижнефтепласт»

Еще один пример использования физических методов для борьбы с коррозией — изготовление рабочих органов ЭЦН из полимерных материалов. Такая технология освоена на предприятии «Ижнефтепласт» (см. «ЭЦН из полимерных материалов компании «Ижнефтепласт»). К преимуществам рабочих органов ЭЦН из полимеров можно отнести следующие:

  • коррозионная стойкость материала;
  • малый вес, снижающий массу ротора и пусковые токи;
  • высокая чистота проточных каналов, низкая адгезия материала, что обеспечивает увеличение КПД на 3–5%;
  • отсутствие гальванических пар между материалами;
  • относительно низкая стоимость;
  • возможность изменения материала втулки направляющего аппарата.

Сталеполимерные трубы компании «ПсковГеоКабель»

Среди минусов стоит упомянуть неотработанную технологию повторного применения полимерных рабочих органов ЭЦН после эксплуатации в условиях Западной Сибири и их низкую стойкость к мехпримесям. Еще один пример оборудования, изготовленного из коррозионностойкого материала, — сталеполимерные лифтовые трубы/шлангокабели, изготавливаемые компанией «ПсковГеоКабель» (см. «Сталеполимерные трубы компании «ПсковГеоКабель»). Эти трубы производятся из полимерных материалов (полиэтилен, полипропилен, фторопласт) и армируются металлической проволокой. Внутренний диаметр составляет 45 мм, наружный — 71 мм. Возможно «вживление» в оболочку электрических проводников для решения различных задач.

К преимуществам этого оборудования относятся:

  • высокая коррозионная стойкость материала;
  • меньшая масса по сравнению с металлическими трубами;
  • низкая теплопроводность материала, которая способствует снижению отложений АСПО;
  • меньшие гидравлические сопротивления по сравнению с обычными НКТ вследствие отсутствия муфтовых соединений и непрерывности трубопровода. Недостаток сталеполимерных труб состоит в их меньшей, по сравнению с металлическими трубами, прочности.

В компании «Татнефть» изготавливаются стеклопластиковые НКТ. Они отличаются высокой коррозионной стойкостью материала, меньшей, по сравнению с металлическими трубами, массой и низкой теплопроводностью, которая способствует снижению отложения АСПО. В то же время, стеклопластиковые НКТ отличаются меньшей, по сравнению с металлическими трубами, прочностью и относительно низкой термостойкостью (до 110°С).

Из коррозионностойкого материала также изготавливается один из видов оборудования ТМК «ПремиумСервис» — специальные высокогерметичные резьбовые соединения, «премиальные» резьбы. Резьбы специального профиля, прошедшие спецобработку, применяются в муфтовых соединениях ТМК GF, ТМК PF, ТМК PF ET и безмуфтовых ТМК ULTRA (FJ,SF,FX). К плюсам этого оборудования мы относим: возможность работы в агрессивных средах; способность воспринимать высокие растягивающие, сжимающие и изгибающие нагрузки и избыточный крутящий момент; большее количество спускоподъемных операций относительно стандартного исполнения. Ограничивает использование этого оборудования его высокая стоимость.

Защитное покрытие и факторы окружающей среды

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Методы удаления коррозии

Устранение коррозии можно производить следующими способами:

Механическим – используется при сильной степени коррозии, заключается в удалении ржавчины путем зачистки до металла с последующей грунтовкой, шпаклевкой и покраской ремонтируемой области кузова;

Преимущества метода: устранение больших и глубоких пятен, повреждений под вспучившейся краской, а так же низкая стоимость и доступность необходимых материалов.

Недостатки: длительность процесса.

Химическим – заключается в использовании средств для удаления ржавчины. Подобные реагенты широко представлены на современном рынке.

Преимущества способа: устранение коррозии в труднодоступных местах, более высокая скорость процесса.

Недостатки: невозможность применения на сильно поврежденных участках.

Рассмотрим процесс устранения коррозии, каждым из представленных выше методов, подробнее.

Основные объекты коррозии

Неоднородные металлические участки хаотично расположены на поверхности изделия и зависят от технологии и качества их изготовления, поэтому коррозионные разрушения чаще носят локальный характер. Кроме этого, локальность корродирования зависит от неоднородности:

  • защитных оксидных пленок;
  • электролита;
  • влияния внешних факторов (нагрева, облучения);
  • внутренних напряжений, вызывающих неравномерную деформацию.

Сварные и заклепочные соединения являются яркими представителями контакта инородных металлов, подвергающихся активной электрохимической коррозии. Сварка и заклепка — самые распространенные технологии в конструкции неразъемных соединений во всех ведущих отраслях промышленности и крупных трубопроводных системах:

  • машиностроение;
  • судостроение;
  • нефтепроводы;
  • газопроводы;
  • водопроводы.

Наиболее значительные разрушения сварных швов и заклепочных соединений возникают в морской воде, присутствие соли в которой, значительно ускоряет процесс коррозии.

Катастрофическая ситуация сложилась в 1967 году с рудовозом «Анатина», когда морская вода от высоких штормовых волн попала в трюмы корабля. Медные конструкции во внутренней отделке трюмов и стальной корпус способствовали созданию коррозионного элемента в электролите из морской воды. Скоротечная электрохимическая коррозия вызвала размягчение корпуса судна и создание аварийной ситуации, вплоть до эвакуации команды.

Положительный эффект от электрохимической коррозии встречается очень редко. Например, при монтаже новых труб в системах горячего отопления жилых домов. Резьбовые соединения муфт начинают течь при первичном пуске до тех пор, пока продукты коррозии, состоящие из гидратированного железа, не заполнят микропоры в резьбе.

Вне зависимости от вида коррозии, химической или электрохимической, ее последствия одинаковые — разрушение изделий огромной стоимости. Причем помимо прямых потерь от пришедших в негодность материалов, существуют косвенные потери, связанные с утечками продуктов, простоями при замене негодных материалов и деталей, нарушении регламентов технологических процессов.

4 Антикоррозионная обработка неметаллическими неорганическими покрытиями

На металлических изделиях вполне можно формировать посредством электрохимической либо химической обработки специальные пленки для защиты их от ржавления

Чаще всего создаются фосфатные и оксидные пленки (опять-таки, обязательно принимаются во внимание положения СНиП, так как механизмы защиты таких соединений разные для различных изделий)

Фосфатные пленки подходят для антикоррозионной защиты цветных и черных металлов. Суть такого процесса заключается в погружении изделий в нагретый до определенной температуры (в районе 97 градусов) раствор цинка, железа или марганца с кислыми фосфорными солями. Получающаяся при этом пленка идеальна для нанесения на нее лакокрасочного состава.

Заметим, что фосфатный слой сам по себе не отличается длительным сроком применения. Он малоэластичный и совсем непрочный. Используется фосфатирование для защиты деталей, которые работают при высоких температурах или в соленой воде (например, в морской).

Также ограниченно используются и оксидные защитные пленки. Получают их при обработке металлов в растворах щелочей под действием тока. Известным раствором для оксидирования является едкий натр (четырехпроцентный). Операцию получения оксидного слоя нередко называют воронением, так как на поверхности мало- и высокоуглеродистых сталей пленка характеризуется красивым черным цветом.

Оксидирование производится в ситуациях, когда начальные геометрические параметры нужно сохранить в неизменном виде. Оксидный слой обычно наносят на точные приборы, стрелковое вооружение. Толщина такой пленки в большинстве случаев не превышает полутора микронов.

Другие способы защиты от коррозии с применением неорганических покрытий:

Как выбрать пылесос?

Ржавчина на яблоне и груше

Чаще всего ржавчина поражает яблоню и грушу, но может встречаться и на других плодовых растениях. Заметить ржавчину можно, если внимательно рассмотреть верхнюю часть листа. В начальной стадии развития заболевания на ней появляются красновато-бурые пятнышки овальной формы, которые постепенно увеличиваются. Если на этой стадии с болезнью не начать бороться, то ближе к середине лета на нижней стороне пораженных листочков появятся хорошо заметные наросты, которые будут звездообразно разрастаться.

При дальнейшем развитии заболевания листья начнут опадать. Преждевременный листопад может привести к сильному ослаблению растения и снижению его зимостойкости.

Профилактика

Для того чтобы остановить занос зараженных ржавчиной спор с соседнего участка или из ближайшего леса, по периметру участка нужно высадить кустарники с густой кроной (например, иргу или подобные ей растения).

Меры борьбы

Ну, а побороть заболевание можно, используя препараты, в составе которых есть сера (например, коллоидная), а также применяя обработки 1%-ной бордоской жидкостью и иными разрешенными фунгицидами (Абига-Пик, Кумулус, Полирам, Строби).

Ограничения в регулировке доводчика

Для того чтобы устройство работало стабильно и легко регулировалось, при его эксплуатации требуется соблюдение некоторых ограничений.

  1. Настраивая механизм, винты нельзя проворачивать от исходной позиции более, чем на 2 оборота. При несоблюдении правила произойдёт вытекание масла, что плохо повлияет на функционал конструкции, а ремонт дома дверного доводчика довольно сложен.
  2. При монтаже надо внимательно следить, чтобы конструкцию не перекосило, иначе поломки неизбежны.
  3. Подпирать незакрытую дверь различными предметами недопустимо. Для этого имеется специальная опция.
  4. Загрузка полотна тяжёлыми предметами запрещена, поскольку от дополнительной тяжести произойдёт перекос диагонали.

Коррозия металлов и меры борьбы с ней

Коррозия металлов — это процесс их разрушения
вследствие химического и электрохимического взаимодействия с внешней
(коррозионной) средой. В результате коррозии ежегодно теряется в
мире до 10 % годовой выплавки новой стали. Потери от коррозии (на
воспроизводство и замену вышедших из строя конструкций и
оборудования) исчисляются колоссальными суммами, вследствие чего
применяются всевозможные средства и методы борьбы с коррозией
металлов.
В зависимости от характера коррозионного процесса различают
химическую и электрохимическую коррозию металлов.
При химической коррозии металл разрушается в агрессивных средах
вследствие непосредственного соединения металла с агрессивными
химическими агентами (например, железо окисляется).
При электрохимической коррозии разрушение металлов происходит
вследствие их растворения в жидкой среде, являющейся электролитом, и
заключается в образовании на их поверхности множества
микрогальванических элементов.
Наиболее распространенными являются два катодных процесса:
1) разряд водородных ионов по реакции:
2) восстановление растворенного кислорода:
Эти процессы называются соответственно водородной и кислородной
деполяризацией. Анодный и катодный процессы с некоторой вероятностью
и в определенной последовательности протекают в любых точках
металлической поверхности, где катионы и электроны могут
взаимодействовать с компонентами коррозионной среды.
В железоуглеродистых сплавах анодом является феррит, а катодом
цементит или неметаллические включения. Вторичными реакциями
коррозии железа является взаимодействие катионов железа с ионами
гидроксила ОН- с образованием нерастворимого в воде
гидрооксида железа по реакциям:
Со временем гидрат оксида железа переходит в соединение
nFe2O3mH2O,
называемое ржавчиной.
Коррозия металлов может быть местная, при разрушении поверхности в
определенных участках, и равномерная, когда металл разрушается по
всей поверхности, а также межкристаллитная, когда разрушение
происходит по границам зерен металла.
Существует несколько методов антикоррозионной защиты металлов. По
механизму действия все методы антикоррозионной защиты можно
разделить на две основные группы: электрохимические, оказывающие
влияние на потенциал металла или его критические значения, и
механические, изолирующие металл от воздействия окружающей среды
созданием защитной пленки и покрытий.
К основным методам антикоррозионной защиты относятся легирование
металлов, термообработка, ингибирование окружающей среды, деаэрация
среды, водоподготовка, защитные покрытия, создание микроклимата и
защитной атмосферы.
Способы антикоррозионной защиты указываются в рабочих чертежах
конструкций, в СНиП, технических условиях (ТУ). Простейшим и
эффективным способом защиты металлических конструкций от коррозии
является покрытие их поверхностей различными красками, лаками,
эмалями.
Существенный вред подземным металлическим коммуникациям наносит
электрокоррозия от блуждающих токов. Для борьбы с ней необходимо
предусматривать:
1) удаление трасс коммуникаций тепловых сетей от рельсовых путей
электрифицированного транспорта и уменьшение количества пересечений
с ними;
2) увеличение переходного сопротивления между трубопроводами и
грунтом за счет применения электроизолирующих опор труб;
3) установка изолирующих фланцев на трубопроводах на их вводе к
объектам, которые могут являться источниками блуждающих токов
(тяговые подстанции, ремонтные базы и т.п.);
4) увеличение продольной электропроводимости трубопроводов на
защищаемом участке путем установки продольных токопроводящих
перемычек на сальниковых компенсаторах и на фланцевой арматуре;
5) уравнивание потенциалов между параллельными трубопроводами,
прокладываемыми в общих строительных конструкциях путем установки
поперечных электроперемычек между смежными трубопроводами при
использовании электрических методов защиты.

Видео по теме статьи

Протекторная защита от коррозии металлических изделий

Протекторная защита — это один из возможных вариантов защиты конструкционных материалов трубопроводов от коррозии. Применяется, прежде всего, на газопроводах и других магистралях.

Сущность протекторной защиты

Протекторная защита представляет собой использование специального вещества — ингибитора, который является металлом с повышенными электроотрицательными качествами.

Под воздействием воздуха протектор растворяется, в результате чего основной металл сохраняется, несмотря на воздействие коррозийных факторов.

Протекторная защита — одна из разновидностей катодного электрохимического метода.

Данный вариант антикоррозийных покрытий особенно часто применяется, когда предприятие стеснено в своих возможностях по организации катодной защиты от коррозийных процессов электрохимического характера. Например, если финансовые или технологические возможности предприятия не позволяют построить линии электропередач.

Протектор-ингибитор эффективен, когда показатель переходного сопротивления между защищаемым объектом, и средой вокруг него, не является значительной.

Высокая результативность протектора возможна лишь на определенной дистанции. Чтобы выявить это расстояние, применяется определение радиуса антикоррозийного действия применяемого протектора.

Данное понятие показывает максимальное удаление защищающего металла от охраняемой поверхности.

Суть коррозийных процессов сводится к тому, что наименее активный метал в период взаимодействия, привлекает к собственным ионам электроны более активного металла. Таким образом, в одно и то же время осуществляется сразу два процесса:

  • восстановительные процессы в металле с меньшей активностью (в катоде);
  • окислительные процессы металла анода с минимальной активностью, за счет чего и обеспечивается защита трубопровода (или другой стальной конструкции) от коррозии.

Спустя некоторое время эффективность протектора падает (в связи с потерей контакта с защищаемым металлом или же из-за растворения защищающего компонента). По этой причине возникает потребность в замене протектора.

Видео: ремонт дверной ручки

Как обеспечить протекторную защиту

Покрытие труб специальными составами — это задача не только производителя, в процессе эксплуатации конструкции обеспечение защитных свойств тоже должно выполняться. Всего существует несколько способов защиты металла от воздействия агрессивных сред:

  • химическая обработка;
  • покрытие стенок специальными составами;
  • защита от блуждающих токов;
  • подведение катода или анода.

О пассивных и активных способах

Антикоррозионная защита — это целый комплекс мероприятий, проводимых предприятиями. Пассивные методы защиты предполагают выполнение следующих работ:

  • На стадии монтажа между трубопроводом и грунтом оставляют воздушный зазор, препятствующий попаданию грунтовой воды, в том числе в составе с кислотными и щелочными примесями.
  • Покрытие специализированными составами, назначение которых распространяется от негативных воздействий почвы.
  • Обработка металла химическими составами, с образованием тонкой пленки.

Активные способы защиты предусматривают использование тока и обмен ионов на основе химических реакций, за счет чего обеспечивается:

  • Защита подземных трубопроводов от коррозии созданием электродренажной системы для изоляции трубопроводного транспорта от блуждающих токов.
  • Защита анодом от разрушения металлических поверхностей.
  • Катодная защита для увеличения сопротивления металлических оснований.

Только с учетом всех способов, препятствующих образованию ржавчины на металле, будет увеличен срок службы конструкций. Антикоррозионная защита трубопроводов должна выполняться комплексно.

На видео: защита трубопроводов и кабельных линий от электрической коррозии.

https://youtube.com/watch?v=l_pU59HIdlo

О достоинствах применения протекторов

Защита труб этим способом производится с добавлением компонента — ингибитора. Это материал с отрицательным электрическим зарядом. Под воздействием воздушных масс он растворяется, а конструкция остается целой и не подвергается ржавлению. Протекторная защита от коррозии применяется для продления срока службы строительных конструкций, систем отопления и водоснабжения, а также магистрального и промыслового трубопроводного транспорта.

Применение электрохимической защиты позволяет устранить причины многих видов коррозии. Такая антикоррозийная защита трубопроводов – неплохое решение даже для предприятий, не имеющих финансовых возможностей по обеспечению полноценной защиты от неконтролируемого процесса.

Для обеспечения грамотного подхода следует:

  • Протекторы, изготовленные из алюминия, использовать в средах морских вод и прибрежных шельфах.
  • В средах с небольшой электропроводностью использовать магниевые протекторы. Но, опять же, они не подходят для обработки внутреннего покрытия резервуаров, нефтяных отстойников в связи с тем, что обладают достаточно низкой взрывопожароопасностью.
  • Использовать протекторы для защиты от сред пресной воды.
  • Проекторы, выполненные на основе цинка, являются полностью безопасными, их можно применять на пожаро- и взрывоопасных производствах.

Протекторной антикоррозионной защите можно отнести следующий ряд преимуществ:

  • недостаток денежных средств и производственных мощностей у предприятия не будет препятствием ее выполнению;
  • возможность защиты конструкций небольших размеров;
  • если трубы покрыты теплоизоляционными материалами, то такая защита приемлема.

Используемые материалы и цели применения

Противокоррозионная защита необходима для всех металлических оснований. Данный вид противостояния от ржавчины широко используется для обработки танкеров, так как эти суда наиболее подвержены воздействию воды, имеющей в составе агрессивные компоненты. Даже специальная окраска не справляется с решением этой проблемы.

Наиболее рациональным выбором для покрытия стальных конструкций будет использование протекторов с отрицательным потенциалом. При изготовлении таких устройств применяется магний, цинк или алюминий. Большая разница потенциалов металла и стальных поверхностей способствует увеличению спектра защитного действия, в результате различные виды коррозии устраняются.

Пассивная защита требуется стальным покрытиям и изделиям из металла. Сущность метода заключается в применении гальванических анодов, обеспечивающих противодействие подземных трубопроводов коррозии. При произведении расчета для данной установки, необходимо учитывать следующие показатели:

  • параметры силы тока;
  • сопротивление от перепадов напряжения;
  • характеристики степени защиты, применяемые для 1 км трубопровода;
  • показатель расстояния между элементами защиты.

Методы защиты от коррозии металла

Основной способ защиты от коррозии металла – это создание защитных покрытий – металлических, неметаллических или химических.

Металлические покрытия.

Металлическое покрытие наносится на металл, который нужно защитить от коррозии, слоем другого металла, устойчивого к коррозии в тех же условиях. Если металлическое покрытие изготовлено из металла с более отрицательным потенциалом (более активный) , чем защищаемый, то оно называется анодным покрытием. Если металлическое покрытие изготовлено из металла с более положительным потенциалом (менее активный), чем защищаемый, то оно называется катодным покрытием.

Например, при нанесении слоя цинка на железо, при нарушении целостности покрытия, цинк выступает в качестве анода и будет разрушаться, а железо защищено до тех пор, пока не израсходуется весь цинк. Цинковое покрытие является в данном случае анодным.

Катодным покрытием для защиты железа, может, например, быть медь или никель. При нарушении целостности такого покрытия, разрушается защищаемый металл.

Неметаллические покрытия.

Такие покрытия могут быть неорганические (цементный раствор, стекловидная масса) и органические (высокомолекулярные соединения, лаки, краски, битум).

Химические покрытия.

В этом случае защищаемый металл подвергают химической обработке с целью образования на поверхности пленки его соединения, устойчивой к коррозии. Сюда относятся:

оксидирование – получение устойчивых оксидных пленок (Al2O3, ZnO и др.);

азотирование – поверхность металла (стали) насыщают азотом;

воронение стали – поверхность металла взаимодействует с органическими веществами;

цементация – получение на поверхности металла его соединения с углеродом.

Изменение состава технического металла также способствует повышению стойкости металла к коррозии. В этом случае в металл вводят такие соединения, которые увеличивают его коррозионную стойкость.

Изменение состава коррозионной среды (введение ингибиторов коррозии или удаление примесей из окружающей среды) тоже является средством защиты металла от коррозии.

Электрохимическая защита основывается на присоединении защищаемого сооружения катоду внешнего источника постоянного тока, в результате чего оно становится катодом. Анодом служит металлический лом, который разрушаясь, защищает сооружение от коррозии.

Протекторная защита – один из видов электрохимической защиты – заключается в следующем.

К защищаемому сооружению присоединяют пластины более активного металла, который называется протектором. Протектор – металл с более отрицательным потенциалом – является анодом, а защищаемое сооружение – катодом. Соединение протектора и защищаемого сооружения проводником тока, приводит к разрушению протектора.

Виды

Коррозия может происходить в присутствии электролитов и неэлектролитов. Поэтому основными видами коррозии металлов по механизму возникновения являются:

  • химическая – возникает в отсутствии электролита в сухой или влажной среде;
  • электрохимическая – происходит в присутствии электролита.

Химическая коррозия связана с неэлектролитами – веществами, не проводящими электрический ток в растворах или расплавах. К неэлетролитам относятся многие простые неорганические (кислород, водород) и органические (эфир, бензол) вещества.

Химическая коррозия может происходить в присутствии газов (водорода, кислорода, хлора), органических кислот и солей. Молекулы металла соединяются с химическими элементами, и на металлической поверхности возникают плёнки – оксиды, сульфиды, гидриды. Внешне это заметно по изменению цвета. Железо, соединяясь с кислородом, образует Fe2O3 – оксид железа (III) – рыжую ржавчину.

Рис. 2. Оксид железа.

Если в расплаве или в растворе присутствуют вещества, проводящие электрический ток (электролиты), то появляется электрохимическая коррозия. Она возникает в присутствии солей, кислот, щелочей или при соприкосновении поверхностей двух металлов, между которыми находится влажная среда. Из-за разности окислительно-восстановительных потенциалов возникает гальванический элемент – источник электрического тока. Металл выступает в роли анода (восстановителя), электролит – катода (окислителя). Анод, отдавая электроны, окисляется или коррозирует.

Рис. 3. Схема электрохимической коррозии.

Классификация коррозии может проводиться по другим признакам. По очагу поражения коррозия бывает:

  • местной;
  • сплошной;
  • точечной.

Коррозия может происходить в разных средах:

  • газовой (безводной);
  • атмосферной (влажной);
  • жидкостной;
  • грунтовой;
  • радиационной.

Соль ускоряет процесс ржавления, поэтому корабли быстрее ржавеют в морской, чем в пресной воде.

Что мы узнали?

Коррозия – окисление и разрушение металла под воздействием окружающей среды. Процесс окисления может происходить в присутствии или в отсутствии электролитов. Коррозия, возникающая без воздействия электролитов, называется химической. На поверхности металлов возникают оксиды, гидроксиды, соли. Под действием электролитов возникает электрохимическая коррозия. Окислению подвергается металл, выступающий в роли анода.

Тест по теме

  1. Вопрос 1 из 5

    Что происходит при коррозии?

    • Окисление металла и восстановление корозионной среды
    • Восстановление металла и окисление корозионной среды
    • Окисление металла и коррозионной среды
    • Восстановление металла и коррозионной среды

Начать тест(новая вкладка)

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector