Микрозиверты в микрорентгены

Особенности радиационного исследования в медицине

Рентгеновское излучение занимает почетное второе место среди всех способов облучения человека, после природного. Но по сравнению с последним, излучение, которое применяется в рентгенодиагностике, намного опаснее из-за таких причин:

  • Рентгеновское излучение превышает мощность натуральных источников радиации.
  • В диагностических целях облучается ослабленный заболеванием человек, что усиливает вред здоровью от рентгеновских лучей.
  • Медицинское излучение имеет неравномерное распределение по организму.
  • Органы могут подвергаться рентгеновским лучам несколько раз.

Однако, в отличие от радиации природного происхождения, которое трудно предотвратить, рентгенодиагностика уже давно включает в себя разные способы защити от вредного влияния излучения на человека. Об этом немного позже.

Свежие газеты

Уровень радиации в Ufi онлайн

Вот почему внезапно затягивает дыхание, веки становятся тяжелыми, отвлекает внимание … Радон проникает сквозь землю, фундамент, почву и балку, как правило, на первый этаж комнаты, подвал под землей. Уплотнение из-за нагрева только увеличивает концентрацию радона: просто нет возможности идти

Многое зависит от строительного материала и полов, на которых стоят здания

Уплотнение из-за нагрева только увеличивает концентрацию радона: просто нет возможности идти. Многое зависит от строительного материала и полов, на которых стоят здания.

Относительно мало радона — дерева, кирпича, бетона. Значительно больше — граниты и плавники. Фосфатный фосфат (образующийся при переработке фосфатной руды) и используемый для изготовления строительных блоков, сухие гипсовые плиты получают на 30% более интенсивное излучение людей.

Очень высокая радиоактивность имеет кирпичную красную глину, которая является отходами при производстве алюминия. NRB определяет стандарты радиобезопасности для радона:

в проектировании зданий и сооружений он должен обеспечить, чтобы объемная активность изотопов радионов и тонов не превышала 100 Бк / м3;

в управляемом радоне не должно превышать 200 Бк / м3.

Скорость гамма-излучения в этом случае не может превышать мощность в открытой области более чем на 0,3 мкЗв / ч (30 мкР / ч);

если объемная активность изотопов радона снижается до 400 Бк / м3 и скорость излучения гамма-излучения составляет менее 0,6 мкЗв / ч (60 мкР / ч), то жители таких зданий должны быть переселены.

Мутация от облучения

Смертельная доза радиации для человека в рад составляет свыше 600 единиц и приводит к летальному исходу. Облучение в дозе от 400 до 600 рад способствует появлению лучевой болезни и может вызвать мутацию генов. Действие ионизированного преображения организма мало изучено, мутации проявляют себя через поколения. Разброс времени дает право сомневаться, появилась мутация от радиоактивного влияния или вызвана другими причинами.

Мутации по виду делят на доминантные, появляющиеся в короткий период после действия облучения и рецессивными. Второй вид проявляет себя, если мать и ребенок имеют один мутантный ген. Мутация не просыпается несколько поколений или не беспокоит человека совсем. Перерождение плода трудно определяется в случае преждевременных родов, если мутация не дает возможности зародышу достичь родового возраста.

Смертельная доза

В одном из произведений Бориса Акунина рассказывается об острове Ханаан. Святые отшельники не подозревали, что охраняемый ими «кус сферы небесной» — метеорит, угодивший в месторождение урана. Излучение этого природного делителя приводило к смерти через год.

Но один из «охранников» отличался богатырским здоровьем – он позже других полностью облысел, и прожил в два раза дольше, чем прочие.

Этот литературный пример четко показывает, насколько вариативным может быть ответ на вопрос, какова смертельная доза радиации для человека.

Существуют такие цифры:

  1. Смерть – свыше 10 Гр (10 Зв, или 10000 мЗв).
  2. Угроза для жизни – дозировка более 3000 мЗв.
  3. Лучевую болезнь вызовет более 1000 мЗв (или 1 Зв, или 1 Гр).
  4. Риск различных заболеваний, в том числе раковых – более 200 мЗв. До 1000 мЗв говорят о лучевой травме.

Однократное облучение приведет к:

  • 2 Зв (200 Р) – снижение лимфоцитов в крови на 2 недели.
  • 3-5 Зв – выпадение волос, облезание кожи, необратимое бесплодие, 3,5 Зв – у мужчин временно исчезают сперматозоиды, при 5,5 – навсегда.
  • 6-10 Зв – смертельное поражение, в лучшем случае еще несколько лет жизни с очень тяжелой симптоматикой.
  • 10-80 Зв – кома, смерть через 5-30 мин.
  • От 80 Зв – смерть мгновенно.

Смертность при лучевой болезни зависит от полученной дозы и состояния здоровья, при облучении более 4,5 Гр смертность – 50%. Также лучевую болезнь подразделяют на различные формы, в зависимости от полученного количества Зв.

Имеет значение и вид облучения (гамма, бета, альфа), время облучения (большая мощность в короткий промежуток или та же самая небольшими порциями), какие именно участки тела подверглись облучению, или оно было равномерным.

Ориентируйтесь на приведенные выше цифры и помните о важнейшем правиле безопасности – здравом смысле.

Как именно радиация влияет на клетки?

Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества. За атомами меняются молекулы, за молекулами общие свойства живой ткани. С возрастанием уровня облучения увеличивается и количество измененных клеток, что приводит к более глобальным переменам. В связи с чем и были высчитаны допустимые дозы облучения для человека. Дело в том, что изменения в живых клетках затрагивают и молекулу ДНК. Иммунная система активно восстанавливает ткани и даже способна «починить» поврежденную ДНК. Но в случаях значительного облучения или нарушения защитных сил организма развиваются заболевания.

С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.

Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.

В чем заключается отличие рентгеновского излучения?

Если обычные световые лучи наша кожа отражает или поглощает, то рентгеновские буквально насквозь пронизывают наше тело. Рентгеновский аппарат осуществляет лучевое облучение тех участков тела, которые необходимо исследовать, и при помощи специального детектора фиксирует их на противоположной стороне. Такой метод исследования называется рентгенографией, а полученное при этом изображение в черно-белых тонах — рентгенограммой. Вследствие поглощения рентгеновских лучей плотными структурами исследуемых участков, они появляются на рентгенограмме в белом цвете. Структуры же, имеющие низкую плотность, пропуская через себя лучи, отражаются на снимке черными либо серыми участками.

Другим методом обследования является рентгеноскопический, при котором на экране монитора можно визуально увидеть состояние исследуемого внутреннего – снимки в этом случае не предусмотрены.

Часта доза рентгеновского облучения минимальна.

Для получения точного результата при исследовании, пациенту следует четко следовать всем указаниям специалиста, проводящего процедуру. Повторные, тем более – частые манипуляции могут оказаться вредными для здоровья.

Статистика утверждает, что при постановке каждого седьмого диагноза принимает участие рентген. Его назначают при болезнях сердца, желудочных, легочных заболеваниях, вывихах, переломах и других недугах, так или иначе связанных с внутренними органами человека.

На рентгеновском снимке можно не только удостовериться в наличии конкретного заболевания либо опровергнуть имеющиеся предположения, но и визуально разглядеть степень поражения различных органов и участков, определить необходимость в незамедлительном хирургическом вмешательстве.

Учет доз облучения

По закону, каждое диагностическое исследование, связанное с рентгеновским облучением, должно быть зафиксировано в листе учета дозовых нагрузок, который заполняет врач-рентгенолог и вклеивает в вашу амбулаторную карту. Если вы обследуетесь в больнице, то эти цифры врач должен перенести в выписку.

На практике этот закон мало кто соблюдает. В лучшем случае вы сможете найти дозу, которой вас облучили, в заключении к исследованию. В худшем — вообще никогда не узнаете, сколько энергии получили с незримыми лучами. Однако ваше полное право — потребовать от врача рентгенолога информацию о том, сколько составила «эффективная доза облучения» — именно так называется показатель, по которому оценивают вред от рентгена. Эффективная доза облучения измеряется в милли- или микрозивертах — сокращенно «мЗв» или «мкЗв».

Раньше дозы излучения оценивали по специальным таблицам, где были усредненные цифры. Теперь каждый современный рентгеновский аппарат или компьютерный томограф имеют встроенный дозиметр, который сразу после исследования показывает количество зивертов, полученных вами.

Комнатные растения в интерьере детской

Мощность и доза

Мощностью радиационного излучения называется количество ионизации за определенный временной промежуток. Для мощности существует единица измерения – микрорентген в час.

Полученная доза измеряется суммарной дозой, определяемой мощностью излучения, умноженной на время действия микрочастиц, таким образом, высчитывается смертельная доза радиация для человека, которая приводит к летальному исходу. Для измерения эквивалентной дозы используется зиверт (Зв), мощность для расчета определяется в зивертах в час (Зв/ч).

Для расчета эквивалентной дозы от воздействия лучей различных типов принимают во внимание интенсивность искомого излучения по отношению к зиверту. Например, при определении суммарной дозы от действия гамма-лучей приравнивают 100 рентген к 1 Зв

Мелкие дозы, меньше 1 Зв высчитывают в отношении:

  • 1 мЗв (миллизиверт) равен 1/1000 зиверта;
  • 1 мкЗв (микрозиверт) равен 1/1000 миллизиверта или 1/1000000 зиверта.

Дозы облучения

Следующие данные дают представление о том, какое облучение при рентгене можно получить во время обследований:

  • флюорография органов грудной клетки – 0,08 мЗв;
  • исследования молочной железы (маммография) – 0,8 мЗв;
  • рентген пищевода и желудка – 0,046 мЗв;
  • рентген зубов – 0,15-0,35 мЗв.

В среднем за одну процедуру человек получает дозу 0,11 мЗв. Цифровые рентгенологические аппараты позволяют уменьшить лучевую нагрузку в рентгенодиагностике до значения 0,04 мЗв. Для сравнения, при перелете в течение 8 часов в самолете она составляет 0,05 мЗв, и чем выше высота полета на дальнемагистральных маршрутах, тем больше эта доза. В связи с этим у летчиков есть санитарная норма летных часов – не более 80 в месяц.

Регистрация облучения

Согласно СанПиН 2.6.1.1192-03, пациент имеет право на предоставление полной информации о лучевой нагрузке и ее последствиях, а также на самостоятельное принятие решения о проведении рентгенобследования.

Врач рентгенологического кабинета (или его лаборант) должен регистрировать эффективную дозу в листе учета дозовых нагрузок. Этот лист вклеивается в амбулаторную карту пациента. Регистрация также производится в журнале учета, который ведется в рентгенкабинете. Однако на практике эти правила часто не соблюдаются. Причина этого кроется в том, что доза облучения при рентгене значительно ниже критической.

Единицы измерения

В отличие от естественного радиационного фона, при медицинских исследованиях облучение является неравномерным. Чтобы определить степень вреда, который рентгеновские лучи наносят человеку, сначала надо разобраться, в каких единицах измеряют дозу облучения.

Для оценки действия ионизирующего излучения в науке была введена специальная величина – эквивалентная доза Н. Она учитывает особенности радиационного воздействия при помощи взвешивающих коэффициентов. Ее значение определяется как произведение поглощенной дозы в органе на взвешивающих коэффициент WR, который зависит от вида излучения (α, β, γ). Поглощенная доза рассчитывается как отношение количества ионизирующей энергии, переданной веществу, к массе вещества в том же объеме. Она измеряется в Греях (Гр).

Возникновение негативных последствий зависит от радиочувствительности тканей. Для этого было введено понятие эффективной дозы, которая является суммой произведений Н в тканях на взвешивающий коэффициент Wt. Его значение зависит от того, на какой орган проводилось воздействие. Так, при рентгене пищевода он равен 0,05, а при облучении легких – 0,12. Эффективная доза измеряется в Зивертах (Зв). 1 Зиверт соответствует такой поглощенной дозе излучения, для которой взвешивающий коэффициент равен 1. Это очень большая величина, поэтому на практике пользуются миллизивертами (мЗв) и микрозивертами (мкЗв).

Что такое радиация?

Что бы ответить на этот вопрос, понять его физический смысл, оценить степень воздействия на нашу жизнь, лучше начать с основы — строения вещества. Это даст общие представления о природе радиации, причинах ее появления.

В других разделах данного ресурса рассматриваются все аспекты радиации, начиная с физической сущности процесса, рассмотрением биологического действия радиации на живые организмы, заканчивая социальным влиянием радиации на общество.

Нужно ли вообще человеку знать о данном явлении, вникать в суть процесса, разбираться с его воздействием на нашу жизнь, на наше здоровье или просто довериться заверениям официальных структур, что радиация «безвредна», «естественна» и «безопасна»? Каждый сам для себя отвечает на данный вопрос. Основное коварство этого явления — это невозможность его ощутить нашими органами чувств, пока не станет слишком поздно. Радиация невидима, неощутима, не имеет запаха и вкуса. За последний век, индустриальное развитие общества, привело к появлению в массовом количестве искусственных источников радиации, сделав радиацию частью нашей повседневной жизни.

Человек за последние 100 лет, в массовом количестве начал добывать, перерабатывать, выделять и создавать новые вещества, которые обладают радиоактивными свойствами. Повсеместно от промышленности, медицины, энергетики до атомного оружия, стали применяться радиоактивные материалы, принося с неоспоримой ценностью и пользой для общества, все сопутствующие радиации опасности.

Возможно, стоит уделить время и узнать немного больше о процессе, который за последний век изменил жизнь человека, принеся ощутимые преимущества нашему обществу, дав ему мощный толчок развития, но к сожалению, ставший причиной гибели более миллиарда человек за последние 70 лет (по расчетам известного американского эпидемиолога и радиоэколога Розалии Бертелл, опубликованным в журнале «The Ecologist» (1999, vol. 29, № 7, p. 408 — 411)). Это больше, чем погибло во всех войнах, которые вел человек, убивая себе подобных. Уже не так много людей, чьей судьбы, его близких или знакомых, в разной степени не коснулась тема такой страшной болезни как — рак. Основной из главных и основных причин, провоцирующих начало развития этой болезни в организме человека — это воздействие радиоактивных изотопов на ткани и органы человека. Конечно есть и другие причины, например, курение или воздействие химических веществ, но это не уменьшает степень влияния радиации в развитии раковых заболеваний самой различной локализации.

Радиация прочно вошла в нашу жизнь, стала ее частью, и понимать, что это такое, какие опасности в себе таит, как предостеречь себя и своих близких от смертельно опасного биологического действия радиации — стоит знать.

Цель данного ресурса, не в коем случае не напугать, не посеять панику или развить фобии.

Цель данного ресурса — это предоставить доступным языком объективную информацию о радиации, человеку, которому не безразлично его здоровье и здоровье его близких. Понимая суть процесса, все его аспекты, общество в целом может выбирать путь своего развития и каждый из нас может внести свой вклад.

Статьи о радиации на сайте

Строение вещества

Строение атома. Что такое радиация, причины возникновения радиации. Распад радиоактивных веществ. Что такое протоны, нейтроны, электроны, изотопы, нуклиды.

Подробнее

Виды радиоактивных излучений

Виды радиации, состав излучения и основные характеристики. Действие радиации на вещество.

Подробнее

Дозиметры

Измерение радиации. Виды дозиметров, их устройство и рекомендации по выбору прибора измерения.

Подробнее

Источники радиоактивных излучений

Источники радиации. Естественные источники излучения, природный радиационный фон. Космическая и солнечная радиация. Природные изотопы, радон, углерод 14 и калий 40.

Подробнее

Единицы измерения и дозы радиации

Единицы измерения и дозы радиации

Подробнее

Нормативные документы по радиации

Нормативные документы по радиации

Подробнее

Виды радиационного фона

Их необходимо знать, чтобы суметь оценить, где и когда могут встречаться дозы, смертельные для организма человека.

Виды фона:

  1. Естественный. В дополнение к внешним источникам, в организме есть внутренний источник – природный калий.
  2. Технологически измененный естественный. Его источники – природные, однако искусственно обработанные. Например, это могут быть извлеченные из недр земли природные ископаемые, из которых впоследствии были изготовлены стройматериалы.
  3. Искусственный. Под ним понимают загрязнение земного шара искусственными радионуклидами. Начал формироваться с развитием ядерного оружия. Составляет 1-3% от естественного фона.

Существуют списки городов России, в которых количество лучевых воздействий стало аномально высоким (из-за техногенных катастроф): Озерск, Северск, Семипалатинск, посёлок Айхал, город Удачный.

Рентгеновское излучение

Как считают ученые, бояться естественного радиационного фона не стоит. Более того, он помогает развитию и росту всех живых организмов на Земле. Ежегодно человек получает равномерную дозу радиации, равную 0,7-1,5 мЗв. Облучение, которому люди подвергаются в результате рентгенологических исследований, в среднем составляет практически такую же величину – порядка 1,2-1,5 мЗв в год. Таким образом, антропогенная составляющая удваивает получаемую дозу.

Рентгенодиагностические технологии широко используются для выявления многих заболеваний. Несмотря на то что в последние годы в медицине происходит интенсивное развитие других технологий (компьютерная томография, МРТ, УЗИ, тепловидение), больше половины диагнозов устанавливается именно с помощью рентгеновских лучей.

К началу XXI века также были исчерпаны практически все технические возможности для максимального снижения лучевой нагрузки в рентгендиагностике. Наиболее эффективным методом в этом отношении стала цифровая методика преобразования рентгеновских изображений. Детектор цифрового рентгеновского аппарата обладает чувствительностью, в несколько раз превышающую у пленочных, благодаря чему и появилась возможность уменьшить дозу излучения.

Нанесение краски на изделие

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

  1. альфа (α) излучение;
  2. бета (β) излучение;
  3. гамма (γ) излучение;
  4. нейтронное;
  5. рентгеновское.

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

Можно ли делать рентген детям?

Так как дети более восприимчивы к рентгеновским лучам, то согласно рекомендациям ВОЗ делать профилактическое исследование в детском возрасте запрещено (до 17 лет). Из-за меньшего роста и веса ребенок получает большую удельную радиационную нагрузку.

Однако в лечебных или диагностических целях рентген детям все же проводится. Это касается тех случаев, когда ребенок получает травму (переломы, вывихи), при патологиях головного мозга, ЖКТ, при подозрении на воспаление легких, проглатывании посторонних предметов и других нарушениях. Вопрос о том, можно ли делать рентген ребенку, решает лечащий врач. При этом предпочтение должно отдаваться тем процедурам, для которых характерна наименьшая доза излучения.

При проведении КТ снижение облучения для ребенка достигается за счет сокращения длительности воздействия, увеличения расстояния до излучателя и экранированием. Рекомендуется проводить такое обследование с применением «быстрой» томографии (вращение трубки аппарата производится со скоростью 0,3 с на 1 оборот).

При выборе клиники, где сделать рентген ребенку, нужно отдавать предпочтение тем, в которых наиболее квалифицированный и опытный персонал, чтобы в дальнейшем не пришлось повторять эту процедуру для уточнения диагноза. Согласно последним исследованиям, риск развития злокачественных заболеваний у детей возрастает в том случае, если получена доза облучения при рентгене порядка 50 мЗв. Поэтому не стоит отказываться от рентгенографии, если она назначена ребенку по медицинским показаниям.

Сколько радиации получает человек при исследовании

Поняв, насколько вреден рентген для человека, у врачей появилась возможность рассчитать, какой должна быть безопасная доза радиации. В медицинской практике это понятие известно как рекомендованная лучевая нагрузка.

У современных аппаратов доза облучения при рентгене не наносит вред здоровью, так как ее показатели в сотни раз ниже смертельной дозы, которая составляет 1 Зв. Именно такая доза облучения для человека чревата развитием лучевой болезни. Она представляет опасность в плане отдаленных последствий и приводит к различным заболеваниям внутренних органов и систем. Что касается такого понятия, как смертельно опасная доза радиации для человека, оно подразумевает более высокую дозовую нагрузку:

  • свыше 4 Зв — влечет смерть спустя 1-2 месяца после облучения из-за поражения костного мозга и нарушения функций системы кроветворения;
  • свыше 10 Зв — влечет смерть спустя 1-2 недели после облучения из-за масштабных кровоизлияний во внутренних органах;
  • свыше 100 Зв — оказывает колоссальный вред, влечет смерть спустя несколько часов (максимум 48 часов) после облучения из-за прекращения функционирования ЦНС.

Специалисты отмечают, что даже современный рентген вреден, если делать рентгенографию слишком часто. В этом случае сказывается способность облучения суммироваться после очередной процедуры.

Какое облучение получают рентгенологи?

Охрана труда врачей-рентгенологов жестко регулируется. Профессиональные работники должны соблюдать все правила безопасности и не превышать дозы ионизирующей радиации в работе. При просвечивании людей они ограждаются защитным экраном, отдельным помещением и специальной одеждой. Такие сотрудники проходят регулярные обследования для контроля здоровья.

Но и они иногда &#171,сгорают&#187, на работе. Проявлениями хронической лучевой болезни у рентгенологов могут быть:

  • Вегето-астенический синдром – снижение аппетита, головные боли, усталость,
  • Офтальмологические проблемы – катаракта, глаукома,
  • Дерматиты, сопровождающиеся шелушением, зудом, хроническим воспалением. При длительном облучении высокими дозами на коже могут образовываться язвы. Со временем излучение может приводить к опухолям кожи и лейкозам.

Рентгеновское излучение

Как считают ученые, бояться естественного радиационного фона не стоит. Более того, он помогает развитию и росту всех живых организмов на Земле. Ежегодно человек получает равномерную дозу радиации, равную 0,7-1,5 мЗв. Облучение, которому люди подвергаются в результате рентгенологических исследований, в среднем составляет практически такую же величину – порядка 1,2-1,5 мЗв в год. Таким образом, антропогенная составляющая удваивает получаемую дозу.

Рентгенодиагностические технологии широко используются для выявления многих заболеваний. Несмотря на то что в последние годы в медицине происходит интенсивное развитие других технологий (компьютерная томография, МРТ, УЗИ, тепловидение), больше половины диагнозов устанавливается именно с помощью рентгеновских лучей.

К началу XXI века также были исчерпаны практически все технические возможности для максимального снижения лучевой нагрузки в рентгендиагностике. Наиболее эффективным методом в этом отношении стала цифровая методика преобразования рентгеновских изображений. Детектор цифрового рентгеновского аппарата обладает чувствительностью, в несколько раз превышающую у пленочных, благодаря чему и появилась возможность уменьшить дозу излучения.

Единицы измерения

Часто можно встретить «радиационный фон в норме составляет 0,5 микрозиверт/час», «норма – до 50 микрорентген в час». Почему единицы измерения разные и как они соотносятся друг с другом. Значение часто может совпадать, например, 1 Зиверт = 1 Грей. Но у многих единиц разное смысловое наполнение.

Всего существует 5 главных единиц:

  1. Рентен – единица является внесистемной. 1 Р = 1 БЭР, 1 Р примерно равен 0,0098 Зв.
  2. БЭР – это устаревшая мера измерения того же самого, доза, воздействующая на живые организмы как рентгеновские или гамма-лучи мощностью 1 Р. 1 БЭР = 0,01 Зв.
  3. Грей – поглощенная. 1 Грей соответствует 1 Джоулю энергии излучения на массу 1 кг. 1 Гр = 100 Рад = 1 Дж/кг.
  4. Рад – внесистемная единица. Также показывает дозу поглощенной радиации на 1 кг. 1 рад – это 0,01 Дж на 1 кг (1 рад = 0,01 Гр).
  5. Зиверт – эквивалентная. 1 Зв, составляющий 1Гр равен 1 Дж/1 кг или 100 БЭР.

Для примера: 10 мЗв (миллизивертов) = 0,01 Зв = 0,01 Гр = 1 Рад = 1 БЭР = 1 Р.

Лучевая болезнь. Лейкоз

В постановке диагноза лучевой болезни большое влияние оказывает радиация. Смертельная доза облучения приводит к летальному исходу, но не менее опасны уровни облучения от 200 до 600 р, вызывающие лучевую болезнь. Радиация поражает человека после однократного мощного воздействия или при постоянном проникновении радиационного излучения небольшой мощности. Примером служит работа рентгенологов, не выдерживающих постоянного облучения и заболевающих характерными заболеваниями.

Наиболее опасным является действие радиации на неокрепший организм до 15 лет. О размере дозы единого мнения нет, исследователи приводят разные дозы допуска в 50, 100 и 200 р. Патогенез изучается в исследовательских институтах, лучевой лейкоз становится более доступным для лечения.

Показатели допустимых доз облучения

Выделяют следующие категории:

  • А – лица, работающие с источниками ионизирующего излучения. По ходу выполнения своих трудовых обязанностей подвергаются облучению.
  • Б – население определенной зоны, работники, чьи обязанности не связаны с получением радиации.
  • В – население страны.

Среди персонала различают две группы: работники контролируемой зоны (дозы облучения превышают 0.3 от годового ПДД) и сотрудники вне такой зоны (0.3 от ПДД не превышается). В пределах доз различают 4 типа критических органов, то есть тех, в чьих тканях наблюдается наибольшее количество разрушений в связи с ионизированным излучением. Учитывая перечисленные категории лиц среди населения и работников, а также критические органы, радиационная безопасность устанавливает ПДД.

Впервые пределы облучения появились в 1928 году. Величина годового поглощения радиационного фона составляла 600 миллизиверт (мЗв). Установлена она была для медицинских работников – рентгенологов. С изучением влияния ионизированного излучения на продолжительность и качество жизни ПДД ужесточились. Уже в 1956 году планка снизилась до 50 миллизиверт, а в 1996-м Международная комиссия по защите от радиации уменьшила ее до 20 мЗв. Стоит заметить, что при установлении ПДД в расчет не берут естественное поглощение ионизированной энергии.

Согласно нормам радиационной безопасности, установлены предельно допустимые величины ионизирующего облучения в год. Рассмотрим приведенные показатели в таблице. Допустимые дозы радиационного облучения за один год

Эффективная доза К кому применима Последствия воздействия лучей
20 Категория А (подвергаются облучению по ходу выполнения норм труда) Не оказывает неблагоприятного воздействия на организм (современная медицинская аппаратура изменений не обнаруживает)
5 Население санитарно-защищенных зон и категория Б облучаемых лиц
Эквивалентная доза
150 Категория А, область хрусталика глаза
500 Категория А, ткань кожи, кистей и стоп
15 Категория Б и население санитарно-защищенных зон, область хрусталика глаза
50 Категория Б и население санитарно-защищенных зон, ткань кожи, кистей и стоп

Как видно из таблицы, допустимая доза облучения в год для работников вредных производств и АЭС сильно отличается от показателей, выведенных для населения санитарно-защищенных зон. Все дело в том, что при длительном поглощении допустимого ионизирующего излучения организм справляется со своевременным восстановлением клеток без нарушения здоровья.

Вред для здоровья

Вредное влияние излучения на здоровье человека зависит от уровня дозы и от того, органа, который подвергался воздействию. При облучении костного мозга возникают заболевания крови (лейкоз и другие), при воздействии на половые органы – генетические отклонения у потомства.

Большими дозами радиации считают 1 Гр и более. При этом происходят следующие нарушения:

  • повреждение значительного числа клеток тканей;
  • возникновение радиационных ожогов;
  • лучевая болезнь;
  • катаракта и другие патологии.

При такой дозировке физиологические изменения неизбежны. Облучение может быть получено непрерывно в течение нескольких часов или суммарно через промежутки времени в результате превышения общего порогового уровня. Тяжесть заболевания зависит от величины полученной дозы.

При средних (0,2-1 Гр) и малых (<0,2 Гр) дозах могут возникнуть спонтанные изменения, которые проявляются через некоторое время, после латентного (скрытого) периода. Предполагается, что такие эффекты могут возникнуть и при малых дозах облучения. Тяжесть заболевания в этом случае не зависит от полученной дозы. Нарушения чаще всего происходят в виде раковых опухолей и генетических отклонений. Злокачественные новообразования могут появиться через несколько десятков лет. Однако, как показывают исследования, такому риску подвергается не более 1% пациентов.

Разновидность излучения

Опасными для человека является излучение микрочастиц, приводящее к заболеваниям организма и смертельным случаям. Величина воздействия зависит от разновидности лучей, продолжительности действия и частоты:

  • тяжелые альфа-частицы, положительно заряженные после распада ядер (к ним относят торон, кобальт-60, уран, радон);
  • бета-частицы являются обычными электронами стронция-90, калия-40, цезия-137;
  • гамма-излучение представлено частицами с большой проникающей способностью (цезия-137, кобальта-60);
  • жесткое рентгеновское излучение, напоминающее гамма-частицы, но менее энергичное, обеспечивает америций-241, постоянным источником возникновения является солнце;
  • нейтроны возникают в результате распада ядер плутония, их скопление наблюдается в окружении атомных реакторов.

Миллисеверты ученых-ядерщиков и ликвидаторов

  • 50 миллисивертов — это годовая максимальная разрешенная доза облучения операторов на ядерных объектах в «спокойное время».

  • 250 миллисекунд — максимально допустимая аварийная доза для экспертов по облучению. Получив такую ​​дозу, ее обычно следует лечить. Вы никогда не должны работать на атомных электростанциях или других объектах, которые угрожают радиации.
  • 300 мЗв — этот уровень вызывает симптомы радиационной болезни.
  • 4000 мЗв — лучевая болезнь с вероятностью смертельного исхода, т. Е.

    смерть.

  • 6000 мЗв — смерть осужденного в течение нескольких дней.

1 миллисеверт (мЗв) = 1000 микроселектов (мкЗв).

обновлено на

Чудовищная сила ионизации

Электроны могут присоединяться к оболочке атома или, наоборот, отрываться. Этот процесс называется ионизацией и интересен тем, что может до неузнаваемости изменить структуру атома. Измененный, он, в свою очередь, меняет молекулу. Примерно так вкратце и происходит влияние радиации на клетки живого организма. Это приводит к патологиям или попросту к болезням.

Когда источники ионизирующего излучения превышают норму, такую территорию принято считать заражённой. Организация Объединённых Наций даёт оценку о норме радиации для человека (в мкР/ч или зивертах), и она составляет 0,22 мкЗв, или 20 микрорентген в час.

У людей может возникнуть вопрос: а передаётся ли лучевая болезнь, например, через рукопожатие. Сразу следует всех успокоить. Общаться с облучёнными людьми можно, и для этого совсем не обязательно надевать противогаз. Опасность скрыта в предметах, излучающих радиацию, – вот их как раз трогать нельзя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector