Мегаомметр, что это такое и как им пользоваться?

Что следует выполнить после окончания измерения мегаомметром

Сразу после выполнения измерений, необходимо сделать три главные вещи. Нужно внесение в протокол измерительных результатов, приведения в порядок рабочего места с инструментами и приспособлениями, а дальше снятие с токоведущих частей остаточного заряда кратковременным заземлением.

Важно отметить, что по требованию охраны труда, в конце работы должна быть отключена измерительная аппаратура, разряжена цепь, которая находится под мегаомметровым воздействием. Далее нужно сделать отсоединение приборных проводов от тока, записать измерительные результаты в ведомость

Потом сообщить лицу, который ответственен за производственные работы. Обо всех недостатках, которые были замечены в процессе деятельности, нужно доложить, чтобы были приняты меры.

Правильное отключение как залог сохранения работоспособности прибора

В целом, мегаомметр — измерительный прибор, позволяющий изучить показания сопротивления электросетевых и приборных обмоток. Отличается от других аппаратов работой на высоком напряжении. Напряжение генерируется самим устройством благодаря встроенной батареи. Область применения его обширна: обычно используется во всех видах промышленности, где есть высокое напряжение. Использовать несложно, главное — изучить инструкцию по применению мегаомметра эс0202 2г и соблюдать технику безопасности. В противном случае, возможна поломка и, как следствие, необходимость ремонта.

Как пользоваться

Чтобы правильно проводить испытания важно сделать правильное выставление измерительных диапазонов и тестовой энергии. Самый простой метод этого выполнения, использовать специальные таблицы с указанием параметров для разных тестируемых объектов

Важно понимать, что во время тестирования необходимо использование диэлектрических перчаток. Также необходимо убрать посторонних с вывешиванием соответствующих предупреждающих плакатов

Во время подключения щупов, необходимо только касаться тех частей, которые заизолированы. До измерения следует сделать переносной вид заземления для отключения контрольных кабелей. При этом сами измерения нужно проводить при сухой изоляции до превышения допустимых пределов влажности.

Использование аппарата по руководству к эксплуатации как возможность его правильной работы и отсутствия поломок

Как прозвонить кабель

Проверить одножильный кабель можно несколькими манипуляциями, выставив тестовый вид напряжения. Первый щуп должен быть прицеплен на часть жилы, а второй должен быть прицеплен на броню. После этого будет подано напряжение. Если не имеется брони, то необходима земляная жила. При нахождении показаний до 0,5 мОм, значит кабель неизношен и его можно использовать дальше и не заменять.

Обратите внимание! Прозванивая многожильный кабель, нужно осуществлять проверку каждой жили, а из остальных полупроводников сделать сбор единого жгута. Чтобы получить достоверные результаты, необходимо обеспечение хорошего контакта

Правильный прозвон кабеля путем аппарата

Проверка изоляции

Проверка изоляции — еще одна функция измерительного прибора. Изоляция позволяет защитить жилу от соприкосновения с другой жилой. Характеристика изоляционного качества — сопротивление. Это измеряется в омах с производными. Сопротивление является величиной, которая обратна производимости. То есть она может показать возможность непропуска электротока.

Чем меньше изоляция, тем больше возможность нахождение тока пути и распространение из кабеля к токопроводящим поверхностям и материалам. То есть может быть изоляционный кабельный пробой

Важно понимать, что изоляция стареет, ухудшается из-за влажности и механического повреждения. Также ухудшается из-за воздействия агрессивной внешней среды

Проверка изоляции как одно из условий использования

Как определить межвитковое замыкание в двигателе

Добрая половина всех случаев неисправностей электродвигателей приходится на межвитковое замыкание. Межвитковым замыканием называется короткое замыкание между разными витками одной катушки или секции обмотки электрической машины. Причин межвитковых замыканий может быть несколько.

Причины межвитковых замыканий

Одна из причин межвиткового замыкания — перегрузка электродвигателя по току, когда нагрузка на двигатель в течение значительного промежутка времени превышает номинальную. В этом случае обмотка статора разогревается от чрезмерного тока настолько сильно, что изоляция в каком-то ее месте может разрушиться и способствовать короткому замыканию между соседними витками. Нормальный ток статора под нагрузкой всегда можно посмотреть в паспорте двигателя либо на информационном шильдике на его корпусе.

Перегрузка может случиться, например, из-за нештатного режима эксплуатации оборудования, приводимого в действие данным двигателем. Кроме того причиной токовой перегрузки может стать механическое повреждение непосредственно двигателя: заклинивание ротора, стопорение подшипников и т. д.

Не исключен также заводской брак обмотки, либо нарушение целостности изоляции во время ручной перемотки статора в кустарных условиях. При несоблюдении условий хранения или эксплуатации электродвигателя, случайно попавшая внутрь влага способна навредить изоляции и привести к межвитковому замыканию.

Так или иначе, какой бы ни оказалась причина межвиткового замыкания, с ним пострадавший двигатель нормально работать уже точно не сможет, либо проработает, но недолго. Поэтому при обнаружении симптомов межвиткового замыкания, следует незамедлительно начать его поиск с целью скорейшего устранения.

Как выявить межвитковое замыкание

Существует несколько простых проверенных способов выявить наличие межвиткового замыкания. Симптомом обычно является перегрев одной части статора по отношению ко всем остальным его частям. Если данное явление наблюдается, то двигатель необходимо остановить, если надо — снять с оборудования, и подвергнуть точной диагностике.

Прежде всего можно воспользоваться токовыми клещами. Достаточно по очереди измерить токи каждой из фаз обмотки статора, и если в одной из них ток существенно больше чем в остальных, то это — явный признак того, что место замыкания находится в соответствующей части обмотки. Предварительно необходимо убедиться, что напряжение на все выводы (между каждой парой из трех фаз) подается одинаковое, то есть проверить отсутствие перекоса фаз. Для этого пользуются вольтметром, поочередно измеряют напряжения на трех фазах.

Три части трехфазной обмотки следует прозвонить омметром. Сопротивления всех трех обмоток по-отдельности должны быть одинаковыми. Используемый прибор должен обладать достаточно высокой точностью, ведь если имеет место замыкание всего между двумя витками, то различие в сопротивлениях будет минимальным, и его невозможно будет различить если обмотка выполнена толстым проводом.

Наличие замыкания на корпус можно проверить при помощи мегаомметра. Для этого один щуп прибора прикладывается к корпусу двигателя, второй — поочередно к каждому из выводов обмоток. В исправном двигателе сопротивление на каждой из фаз должно быть значительным (смотрите — Как правильно пользоваться мегаомметром ).

Не будет лишним визуально рассмотреть обмотку статора. Чтобы это сделать, нужно будет снять с двигателя крышки, вытащить ротор и внимательно рассмотреть всю обмотку секция за секцией. Если замыкание есть, то подгоревшее место наверняка будет видно сразу.

Если у вас под рукой есть понижающий трехфазный трансформатор на напряжение в районе 40 вольт, то используйте его для проверки целостности статора. Выньте ротор, подключите трансформатор, включите его в сеть. Возьмите железный шарик от подшипника и запустите его в статор, немного ускорив щелчком пальца, так чтобы шарик начал бегать по кругу вслед за вращающимся магнитным полем, имитируя вращение ротора. В случае если шарик остановился и застрял на одном месте статора — значит в этом месте межвитковое замыкание.

Если нет шарика, возьмите пластину трансформаторной стали или железную линейку, приложите ее внутри к статору и перемещайте по кругу. В том месте где пластинка начнет заметно дребезжать — есть межвитковое замыкание. Если межвиткового замыкания нет, то пластинка будет везде примагничиваться к статору. Прежде чем использовать способ с шариком или с пластинкой, убедитесь, что двигатель питается от понижающего трансформатора, иначе можно получить поражение электрическим током.

Безопасная эксплуатация мегаомметра

Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.

С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.

Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.

Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.

Подготовка к измерению сопротивления изоляции кабеля

Замер сопротивления изоляции должен выполняться в соответствии с техническими и организационными мероприятиями. Прозвонить проводник можно только после отключения кабельной линии со всех сторон. В противном случае будет выполнена проверка сопротивления совместно с подключенным электрическим оборудованием.

Измерения должны осуществляться с учетом температуры окружающего воздуха. Она влияет на минимально допустимые показатели изоляционного слоя.

Перед проверкой следует отключить кабельную линию от источника тока и нагрузки

Перед проведением замера следует убедиться в отсутствии напряжения, используя указатель на соответствующий уровень напряжения. Затем закоротить проводник или установить заземление. Это требуется для снятия остаточного или наведенного потенциала. Далее вывешиваются плакаты:

  • запрещающие — «Не включать, работают люди»;
  • указательные — «Заземлено».

Измерение сопротивления изоляции мегаомметром

Электрическая энергия передается по проводам, жилам кабелей, шинам. Электрический ток преобразуется в тепло в нагревательных элементах, создает вращающее магнитное поле в обмотках электродвигателей. Материалы, по которым он проходит, объединяет общее свойство: они проводят электрический ток. А свойство, характеризующее способность проводить ток лучше или хуже, называется электрическим сопротивлением.

Сопротивление материалов, называемых проводниками, относительно мало. Разница только в том, что у металлов и сплавов, использующихся для изготовления нагревательных элементов, оно повыше. За счет этого ток, проходя через них, вызывает их нагрев.

Но передача электроэнергии и функционирование всех электроприборов невозможна без материалов, имеющих противоположное свойство – не проводить ток. Такие материалы называют изоляторами .

Для проводов и кабелей изоляторами являются материалы, которыми покрыты токопроводящие жилы. Для нагревателей – термостойкое покрытие нагревательных элементов. Обмоточные провода электродвигателей покрыты тонким слоем лака. Все они выполняют функцию, сходную с водопроводной трубой: направляют ток в нужное русло, не позволяя ему попадать туда, куда не надо.

Состав изоляции кабеля

Но идеальный изолятор в обычных условиях получить невозможно. Любой материал, не проводящий ток, обладает хоть и малым, но сопротивлением. Оно настолько незначительно, что им можно пренебречь, работоспособность электрооборудования от этого не ухудшается. Но состояние изоляторов может со временем измениться. В электрооборудование попадает вода. В чистом виде она является изолятором (дистиллированная вода), но в том, в котором она существует в быту, она – проводник. Попадая на изоляционные поверхности, она ухудшает их свойства и приводит к коротким замыканиям.

Фарфоровая изоляция нагревательного элемента в утюге

Оболочки и изоляция жил кабелей и проводов со временем стареют или повреждаются. Процесс старения длится много лет, а повреждения возникают внезапно. Это можно не заметить, но начавшийся процесс ухудшения изоляции со временем развивается все быстрее, приводя к выходу оборудования из строя.

И если бы только оборудования. Короткие замыкания в кабелях или электроприборах приводят к пожарам. Ухудшение фазной изоляции приводит к появлению на корпусах электрооборудования опасных для жизни напряжений. А это уже угрожает жизни людей .

Как оценить состояние изоляции? Ведь ее повреждение происходит в местах, недоступных для осмотра. Для этой цели служат измерительные приборы, называемые мегаомметрами .

Принцип измерения сопротивления изоляции мегомметром

Принцип измерения величины сопротивления изоляции сам по себе несложен. Используется закон Ома – замеряется сила протекающего между двумя щупами тока при известном поданном на них напряжении. Отношение величины напряжения к силе тока как раз и даст искомый результат. Этот принцип применяется практически во всех контрольно-измерительных приборах, предназначенных для измерения сопротивлений.

R = U/ I

Но для того чтобы вызвать и «засечь» электрический ток в цепи при очень больших показателях сопротивления (а у изоляции по умолчанию они должны быть такими), требуется подавать и весьма внушительное напряжение. Именно это и реализовано в мегомметрах.

Независимо от типа и модели прибора, он в обязательном порядке имеет:

  1. Высоковольтный источник постоянного напряжения.
  2. Измерительный блок, оценивающий силу проходящего по цепи электрического тока.
  3. Устройство индикации показаний – стрелочное со шкалами, или в виде цифрового дисплея с показом абсолютных значений.
  4. Набор измерительных проводов со щупами, посредством которых высокое напряжение передается на тестируемый объект.

На сегодняшний день существует два основных типа подобных приборов.

Еще не столь давно безраздельно господствовали мегомметры со стрелочной шкалой и встроенным индуктором – динамомашиной. Вращением специальной рукоятки генерируется высокое напряжение, которое после необходимого преобразования подаётся на щупы. Частота вращения – примерно 120÷140 оборотов в минуту (2 оборота в секунду). О выходе на установленное калиброванное высокое напряжение, как правило, извещает загоревшийся индикатор, расположенный на передней панели.

Подобные мегомметры без сколь-нибудь принципиальных изменений выпускаются уже много десятков лет. И, надо сказать, не торопятся «уходить со сцены».

Подобные модели довольно просты в устройстве, несложны в управлении. Как правило, имеют весьма солидные габариты и вес. Но зато – они полностью автономны, то есть не требуют ни элементов питания, ни подключения к сети

Идеальное решение для любых «полевых» условий, что бывает особенно важно во время ведения строительства

Как бы то ни было, мегомметры такого типа все еще выпускаются промышленностью, находят спрос. А многие мастера-электрики и вовсе предпочитают исключительно их, несмотря на появление более компактных и «навороченных» приборов.

Другой тип мегомметров – это электронные приборы, которые обычно намного компактнее и легче. Высокое напряжение у них вырабатывается в специальном электронном преобразователе от встроенного аккумулятора, сменных источников питания или от блока питания, требующего подключения к сети. Многие модели позволяют выбрать любой из этих  вариантов питания. Но в любом случае прослеживается зависимость от наличия источника – полной автономности в работе нет.

Многие современные мегомметры внешне напоминают привычные мультитестеры. А нередко и способны выполнять ряд функций, им присущих.

Электронные приборы довольно компактны, и некоторые из них внешне даже вполне можно спутать с мультиметрами. Кстати, во многих моделях это сходство не ограничивается лишь внешним. Действительно, в них заложены некоторые функции «общего плана». Обычно это измерение постоянного и переменного напряжения, прозвон цепей и определение сопротивления в нижнем диапазоне значений, то есть от нуля до мегаома. Могут иметься и другие функции, в том числе и узкоспециализированного предназначения.

Проведение измерений – до предела упрощено. После выставления всех необходимых параметров и коммутации проводов мегомметра к проверяемому объекту, остается только нажать кнопку «TEST».

Индикация полученных показаний замеров выводится на цифровой дисплей, что, безусловно, значительно упрощает восприятие информации. Спустя несколько секунд после пуска, на дисплее появится измеренное значение сопротивления, с указанием соответствующей величины (МОм или ГОм, МΩ или GΩ).

Цифровые дисплеи намного удобнее для считывания измеренных значений сопротивления

Удобство в том, что и замеры, и считывание результатов никак не зависит от пространственного положения прибора. У стрелочных с этим сложнее – для корректных замеров требуется исключительно горизонтальное расположение.

Итак, независимо от типа мегомметра, принцип его работы един. На тестируемом объекте закрепляются щупы измерительных проводов, подключенных к прибору. Затем на них подается калиброванное высокое напряжение. Измеренное значение силы тока позволяет судить о сопротивлении между щупами. Значение выводится на устройство индикации.

Другие позиции

Кроме силовых и контрольных линий мегаомметром можно измерять и другие, работающие от электрического тока. К примеру:

  • Машины постоянного тока, а точнее, их обмотки и бандажи со всеми присоединенными к ним кабелями и проводами. При этом настройка мегомметра производится: при номинале напряжения до 500 В устанавливается предел 500 вольт, при номинале выше 500 на предел 1000 вольт. Сопротивление изолирующего слоя не должно быть ниже 0,5 МОм.
  • Варочные бытовые электрические плиты проверяются испытательным прибором при 1000 вольт. Норма – 1 МОм.
  • Проверка электрооборудования лифтов и различных подъемных кранов также производится мегомметром, который выставляется на 1000 В. 0,5 МОм – это норма сопротивления.

Проверка сопротивления изоляции кабеля мегаомметром

Принцип действия мегаомметра

Работа мегаомметра основана на законе Ома для участка цепи, отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.

В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается зажимами – «крокодилами».
Амперметр, включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.

Видеоуроки

Первым делом предоставляем к вашему вниманию инструкцию по эксплуатации стрелочного мегаомметра ЭС0202/2-Г:

Еще один популярный стрелочный измеритель, который является аналогом указанной выше модели — м4100. Пользоваться им тоже достаточно просто, в чем можно убедиться, просмотрев данное видео:

Цифровые мегаомметры с дисплеем еще проще в использовании. К примеру, выполнить измерение сопротивления изоляции кабеля современным измерителем UT512 UNI-T можно по такой технологии:

Ну и последняя инструкция касается еще одного популярного устройства — Е6-32. На видео ниже достаточно подробно показывается, как пользоваться мегаомметром для измерения сопротивления изоляции трансформатора, кабеля и даже металлосвязи:

Вот по такой методике осуществляют измерение сопротивления изоляции мегаомметром. Как вы видите, пользоваться данным прибором не сложно, однако нужно серьезно отнестись к технике безопасности и принять все необходимые меры защиты.

Будет интересно прочитать:

  • Как измерить сопротивление тэна тестером
  • Как правильно пользоваться мультиметром
  • Как проверить работоспособность транзистора

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в “динамо-машине”). Специалисты нередко называют их “стрелочными”, что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.


Цифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением “1800 in”.

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый “продвинутый” мультиметр, ни любой другой подобный ему образец

С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).

Мегаомметр М4100

Мегаомметр-Ф-4100

Мегаомметр-ЭС-02021Г

Цифровой измеритель Fluke 1507

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Мегаомметр, что это такое и как им пользоваться?

Мегаомметр или мегомметр как правильно говорить? Такой вопрос возникает у многих. С точки зрения русского языка правильно мегомметр, без идущих друг за другом гласных. Но если посмотреть с профессиональной стороны, то правильно будет мегаомметр, «мега» приставка, показывающая диапазон измерения прибора на высоком напряжении, и «Ом» единица сопротивления, то есть то, что измеряет прибор, ведь не зря во многих рабочих журналах проверок средств защиты пишут именно мегаомметр. Слово «метр» означает измеряю. Прибор используется для определения большого значения сопротивления, отключенных от электропитания, электрических цепей и диэлектриков, применяемых для изоляции кабельной продукции, изолированных проводов, двигателей, трансформаторных и электротехнических устройств, установок телекоммуникаций и прочих электрических машин.

Прибор также осуществляет измерительные действия по определению поверхностных и объемных сопротивлений изоляции, определяющей состояние безопасности установки.

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Мегаомметр ЭСО-210

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы ЭСО 210/3 и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой — трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» — нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» — верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» — аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Мегаомметр sonel mic-2510

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом «энтер» и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм — впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector